Power supply category

60V input 5V @3A output DC-DC Converter for Industrial and Automotive

This is a 60 V 3A step down DC-DC converter. Sample applications are: 12 V, 24 V and 48 V Industrial, Automotive and Communications Power Systems. The TPS54360 is a 60 V, 3 A, step down regulator with an integrated high side MOSFET. The device survives load dump pulses up to 65V per ISO 7637. Current mode control provides simple external compensation and flexible component selection. A low ripple pulse skip mode reduces the no load supply current to 146 μA. Shutdown supply current is reduced to 2 μA when the enable pin is pulled low. Under voltage lockout is internally set at 4.3 V but can be increased using the enable pin. The output voltage start up ramp is internally controlled to provide a controlled start up and eliminate overshoot. A wide switching frequency range allows either efficiency or external component size to be optimized. Frequency fold back and thermal shutdown protects internal and external components during an overload condition.

60V input 5V @3A output DC-DC Converter for Industrial and Automotive – [Link]

1.2V-25V/10A Adjustable Power Supply Using Power Op-Amp

This is a small size power supply based on OPA549 power op-amp that provides output voltage 1.2V to 25V with 0 to 10A adjustable current limit. Two onboard trimmer potentiometers provided to adjust the voltage and current, LED D1 is over temperature indicator. The circuit works with input supply of 30V DC and logic supply 5V DC. IC requires large size heat sink to work with full 10A current range. Screw terminals for input and output connections are provided. The OPA549 is a low-cost, high-voltage/high-current operational amplifier ideal for driving a wide variety of loads. This laser-trimmed monolithic integrated circuit provides excellent low-level signal accuracy and high output voltage and current. The OPA549 operates from either single or dual supplies for design flexibility. The input common-mode range extends below the negative supply.

1.2V-25V/10A Adjustable Power Supply Using Power Op-Amp – [Link]

Flexipower – A portable, Controllable, Dual Channel Power Supply

Hobbyists, makers, students and pretty much everyone who works with electronics has encountered the same issue, not having a handy power supply to test their projects. Usually, controllable power supplies are big, expensive and for some people difficult to access, and most small power supplies are not controllable. As a result, Roberto Lo Giacco created Flexipower, a small, portable, flexible, and remotely controllable dual channel power supply.

Flexipower is controlled via a mobile application and its battery operated. It can work up to a voltage of 20 V and a current of 1 A (per channel). Power supply is powered by two cell Li-Ion or Li-Poly batteries which provide 8.4 v when fully charged, to reach higher voltages the battery is fed into a voltage step up circuit, and to get lower voltages the battery is fed into a high current linear voltage regulator. Also, a simple voltage divider along with the 10-bit ADC is used to measure the produced voltage, and adjust accordingly.

Current measuring is done through a 1 Ohm shunt resistor network made by ten 10 Ohm resistors in parallel which results in 1 mV voltage drop per mA. In the case of currents lower than 320mA, the integrated circuit INA219 is used to obtain a very precise reading. When the supplied current goes above the capacity of the INA219 the shunt resistor voltage drop is measured using the 10 bit ADC.

As mentioned before, Flexipower uses 2 rechargeable batteries that are charged via a barrel jack connecting a 12 V source capable of around 1 A. An RGB LED is used to inform the user about the status of the device (power on, battery warning, connection status etc.). The LED is also used to indicate the battery status. Additionally, each channel has a green/red LED to indicate if it is enabled (green), or over current (yellow).

Furthermore, the device can create “Flexipower SSID”, an access point for people to connect and control the power supply. The app was created to avoid using a big LCD screen with limited data logging capabilities. The app allows control, unlimited data logging and visualization just with the use of a smartphone.

For complete specifications, list of materials used, schematics and app download go to official website. The creator always tried to minimize components costs while still providing a lot of capabilities. It still can be improved, but it’s a project that could make the life of people easier. Its important to clarify that this device is not a replacement for benchtop power supplies, but for portability is a great option.

Torpedo 2 – a cheap & powerful 3A DC/DC converter with built-in charger

Boris Landoni @ open-electronics.org presents their second version of Torpedo, a kind of DC-DC converter able to provide 5V output from a variety of sources. He writes:

Some time ago we had introduced you to the Torpedo switching power supply, a particular kind of DC/DC power supply called SEPIC capable of supplying 5 V from several external supply sources, such as an external voltage between around 3.5 and 20 V, the 5 V coming from a USB connector or the 3 to 7 V supplied by a LiPo battery. The very small power supply also had a circuit capable of charging the battery up through external sources, where available.

Specifications

  • triple power source: USB, LiPo battery and an external source;
  • a wide range of input voltage values: 6,5 – 18 V;
  • can supply a maximum current of 3 A;
  • high efficiency, even over 85-90%;
  • built-in charger for LiPo single cells;
  • can switch from battery-powered to another source without interruption;
  • 5 V output with high stability when load varies and low ripple;
  • possibility to turn off the only output leaving the step-down converter and the charger active;
  • possibility to automatically deactivate the output if power supply comes from the USB connector which is limited to 500 mA current by the specs; if there is a battery, power supply is granted by that;
  • status LEDs indicating charge, the power supply used, output activation and so on.

Torpedo 2 – a cheap & powerful 3A DC/DC converter with built-in charger – [Link]

2 X AA Battery To 6V Boost Converter For Arduino Nano

This project is simple solution to power Arduino Nano from two 1.5V batteries. Circuit converts 2 X AA alkaline battery power into 6V 100mA using boost topology. Circuit uses SOT223-6 pin TLV61046A boost converter IC. The TLV61046A is a highly integrated boost converter designed for applications such as PMOLED panel, LCD bias supply and sensor module. The TLV61046A integrates a 30-V power switch, an input to output isolation switch, and a rectifier diode. It can output up to 28 V from input of a Li+ battery or two alkaline batteries in series. The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external components. The TLV61046A has typical 980-mA switch current limit. It has 7-ms built-in soft start time to reduce the inrush current. The TLV61046A also implements output short circuit protection, output over-voltage protection and thermal shutdown. R1 and R2 connected to FB pin to set the output voltage 6V. R1 and R2 can be altered to set higher output voltage, refer data sheet for calculation. The board can be used as Arduino Nano shield or as stand-alone boost converter. It directly fits on top of the Arduino Nano and output is connected to VIN and GND pins of Nano.

2 X AA Battery To 6V Boost Converter For Arduino Nano – [Link]

R&S®NGE100 power supply series with WiFi option

The R&S®NGE100 power supply series consists of robust, high-performance, affordable instruments. They offer high efficiency combined with low ripple plus a variety of comfort functions that are not usually found in this class of power supplies.
The R&S®NGE100 power supply series consists of the R&S®NGE102 two-channel power supply and the R&S®NGE103 three-channel power supply. Both instruments provide up to 33.6 W output power per channel Unlike most power supplies in this class, the R&S®NGE100 power supplies feature 100 % electrically equivalent output channels. All outputs are earth-free and short-circuit-proof. The output channels can be combined in serial or in parallel to achieve higher voltages or higher currents (up to 96V/9 A using all three channels of the R&S®NGE103).

Key Facts

  • R&S®NGE102 with two or R&S®NGE103 with three channels
  • Max. output power of 66 W with R&S®NGE102,
  • 100 W with R&S®NGE103 (33.6 W per channel)
  • Max. output voltage of 32 V per channel (up to 64 V/96 V in serial operation)
  • Max. output current of 3 A per channel (up to 6 A/9 A in parallel operation)
  • Electronic fuse (OCP), overvoltage protection (OVP), overpower protection (OPP), over temperature protection (OTP)
  • USB interface (VCP/TMC), optional LAN (LXI), optional wireless LAN
  • Optional digital I/O (4bit)

Proto Board Power Supply

David Johnson-Davies @ technoblogy.com build a breadboard friendly power supply to power your Arduino or other low power electronics. The power supply is able to deliver 0V to 5.5V at up to 0.5A and it’s powered from two Li-Ion rechargeable batteries. The output can be adjusted using a rotary encoder, and the voltage is displayed on a three-digit 7-segment display. The whole circuit is controlled by an ATmega328.

LiPo breadboard power supply

Versatile And Open Source LiPo bBattery Breadboard Power Supply

Orlando Hoilett from Calvary Engineering LLC designed a  versatile Li-Po battery breadboard power supply and wrote an Instructables on it. This power supply outputs 3.3V to the breadboard and takes input from a single-cell LiPo battery. The breadboard power supply also has the ability to charge the battery without needing to separate it from the circuit board. More importantly, this project is licensed under Open Source Hardware which means anyone can modify, distribute, make, and sell this design.

LiPo bread board power supply
LiPo breadboard power supply

Key Components

The complete BOM is available at the GitHub repository.

  • JST connector
    This connector connects directly to the LiPo battery.
  • 3.3V regulator, AP2210K
    3.3V logic is getting increasingly popular among electronics hobbyists and engineers. Also, boosting 3.7V of a LiPo battery to 5V can induce quite a bit of switching noise on the power supply. Linearly converting 3.7V to 3.3V is the best way to avoid this problem.
  • Battery Charger, MCP73831T
    This power supply has a charger built into the board so you can charge the battery without removing it from the power supply.
  • Voltage Selection Jumper
    The voltage selection headers are 3 pin male headers and they are labeled as 3.3V (or VReg) and VRAW (or LiPo). Connect the center pin to 3.3V to get power from the regulator. Connect the center pin to VRAW to get power directly from the LiPo battery.
  • DPDT Switch
    This switch lets you power down the board without removing the battery.
  • LED indicators
    LEDs are used to indicate the current status of the board.

Details

This board breaks out the LiPo battery to the breadboard power rails on both sides. It has a DPDT switch to power down the board. The AP2210K IC has an ENABLE pin which is pulled down to the ground using the DPDT switch in order to enter the low power mode. In low power mode, the regulator and all the LEDs get disabled and draws almost no current from the LiPo. More about the AP2210K regulator IC is on this datasheet.

LiPo breadboard power supply schematic
LiPo breadboard power supply schematic

Another great feature of this breadboard power supply as mentioned earlier is, it incorporates an MCP73831T LiPo battery charger IC. It is a widely used PMIC (power management integrated circuit) for charging LiPo batteries. The LiPo battery should be connected to pin 3 (VBAT) and 5V should be applied to pin 4 (VDD).

The chip starts charging as soon as it detects 5V input and stops charging when the battery is full. Charging current is limited to USB standard i.e. 100mA by connecting a 10.2K resistor between pin 5 (PROG) and ground. So, it’s completely safe to charge the battery from your laptops USB port. Other host microcontrollers can check the battery status using pin 1 (status pin) of MCP73831T.

PowerPlant, A Personal Power Assistant

Imagine you won’t need electricity mains wherever you are outside! PowerPlant by Nuuq is trying to solve this issue by providing its charging mains-alike power bank. PowerPlant is light enough to be convenient to carry, suitable for you backpack and is TSA approved. Also, it is powerful enough to charge loads of device with its 95 Watts power output.

Check this video to know more about PowerPlant:

Power on the go!

Fortunately, PowerPlant includes a universal plug input, a replaceable battery, plus an inner temperature protection. In addition, it will provide you with easy read via its LCD plus fast charging. Furthermore, it has many competitive advantages compared to similar products.

To summarize, below are the full specifications of PowerPlant:

  • Universal plug for 2 & 3 pin plugs (ideal for USA, UK, Europe and Australia)
  • Output 19v/1.58A 5v 2.4A
  • Output: AC 100 – 240v/95W (max)
  • Modified Sine Wave Inverter
  • Replaceable 20100mAh lithium-Ion battery
  • 2 x 2.4A 5v fastcharge USB ports
  • 1 x USB-C
  • 1 x 19 Volt fast charge charging port
  • LCD display with battery charge, temperature, AC, DC and In/Out display
  • IP4 Splash-proof water resistance

PowerPlant is now live on a crowdfunding campaign on Indiegogo. Amazingly, it has achieved 500% of its goal and still has 11 days to go. Finally, PowePlant is available for $150, you can check the campaign for more details.

Isolated 24V to 12V 10W Flyback Power Supply

maximintegrated.com power supply experts have a reference design of a 24V to 12V flyback converter.

Maxim’s power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these power supplies efficiently converts 24V into useful voltage rails at a variety of power levels. Every power rail is isolated with a readily available transformer from multiple, global vendors, providing for quick, convenient transformer selection. Each design has been tested for load and line regulation, as well as efficiency and transient performance. As with all Maxim reference designs, the BOM, schematics, layout files, and Gerber files are all available. In addition, boards are available for purchase; most boards feature through-hole pins for immediate board placement and accelerated prototyping.

Isolated 24V to 12V 10W Flyback Power Supply – [Link]