Power supply category

Digital Battery Operated Powersupply

ThomasVDD @ instructables.com writes:

A while back I built a powersupply from an old ATX PSU, and while it works great, I wanted to step up my game with a digital powersupply. As already said, it is powered by batteries (2 lithium cells to be precise), and it can deliver a maximum of 20 V at 1 A; which is plenty for most of my projects that require a precise powersupply.

Digital Battery Operated Powersupply – [Link]

400V – 5A Power Supply For Brushless Motor Drivers

Although the power supply design is specific to the Brushless Servo Drivers mainly for IPM Modules, the concepts and circuit design may be used for any power supply requires high voltage output up to 400V DC and 5 Amps. The power supply is an unregulated design with an option to allow connection to either 120V or 230V mains and also it can work with lower voltage for audio amplifiers by increasing capacitor value. The design uses fully integrated bridge rectifier, and multiple bus capacitors for low ripple, noise suppression, and provides high current reservoirs. Additionally the dc supply line have bleeder resistor R2 and R3 to drain the large reservoir capacitors PCB, mounted fuse holder provided  for short circuit and over current protections, low ohm NTC used for inrush current at power start up,  C1, C12, TX protects  against turn on/off spikes and EMI noise reduction. This power supply can be used to drive Tesla Coils, Induction heaters, DC Motor drivers, Brushless DC motor driver.

400V – 5A Power Supply For Brushless Motor Drivers – [Link]

SEPIC/Ćuk converter sprouts second output

by Gheorghe Plasoianu @ edn.com

Many applications require positive and negative supply voltages, with only one voltage requiring tight regulation. This Design Idea describes a dual-output, hybrid SEPICĆuk converter whose positive output voltage can be lesser or greater than the input voltage. The unregulated negative output is a mirrored replica of the positive output.

SEPIC/Ćuk converter sprouts second output – [Link]

Reference design – USB Type-C charger delivers 18W

Graham Prophet @ eedesignnewseurope.com discuss about a 18W USB power supply reference design.

This joint reference design describes an 18W, USB PD compliant, AC-DC power converter. The design, titled DER-567, pairs the WT6630P USB Type-C PD controller from Weltrend with Power Integrations’ InnoSwitch-CP off-line CV/CC flyback switcher IC, to produce a compact and highly energy-efficient standards-compliant power adapter, that PI says will deliver faster charge times for the larger batteries required to power next-generation mobile devices.

Reference design – USB Type-C charger delivers 18W – [Link]

StromPi, The Uninterruptible Power Supply for Raspberry Pi

It seems evident that the Raspberry Pi and its clones have filled an enormous hidden need. The digital performance of such micro-computers is exceptional as long as they are used without any special dependence on power requirements, that is to say near an electrical outlet with power! Faced with the vagaries of the analog world, these tiny cards that fit in the palm of your hand are not as beefy as that. Their dependence on their power supply has highlighted a new need, well identified by the manufacturer JOY-iT. StromPi, their adaptable uninterruptible power supply (UPS) mini card lets you use a Raspberry Pi under conditions of unusual or unstable power, without taking up much space, and without risk of data loss in case of a power cut.

Two working modes are offered:

  • UPS (uninterruptible power supply), i.e. no break power
  • WIDE, which allows an extended range of input voltage

With the following characteristics

  • wide range of DC input voltage, from 6 V to 61 V in WIDE mode
  • 5 V power input on microUSB connector
  • maximum USB output current of 3 A
  • very low standby current
    • (in UPS mode): 20 to 80 μA (that’s between 175 mAh and 700 mAh per year)
    • (in WIDE mode): 3 to 7 mA

In the case of loss of power, the StromPi backup power card not only starts the process of data backup before the Pi is switched off, but it can also guarantee startup once the power is restored (this function may be deactivated with a jumper strap).

When that happens, you can even select to be informed by an email sent by the Raspberry Pi program (which you can download).

Source: Elektor

3.3V @ 1.5A Buck Regulator

The circuit presented here is based on LTC3601, a high efficiency, monolithic synchronous buck regulator from Linear Technology. The circuit operates at an input voltage ranging from 4V to 15V, this makes it suitable for a wide range of power supply applications. It is capable of producing a output voltage of 3.3V. Burst Mode operation and forced continuous mode are the two types of operational modes available in LTC3601.

Features:

  • Input(V): 4VDC to 15VDC
  • Output(V): 3.3VDC
  • Output load: 1.5A
  • PCB:35mm X 25mm

3.3V @ 1.5A Buck Regulator – [Link]

-5V @100mA Switched Capacitor Converter

The circuit diagram presented here is about a negative voltage regulator. It is based on LT1054, which is a switched capacitor voltage converter with regulator from Texas instrument. This device has many advantages over other previously available switched capacitor voltage converters. It provides higher current and has lower voltage losses.

Features:

  • Input Voltage: 3.5VDC to 15VDC
  • Output Voltage: -5VDC
  • Output load: 100mA
  • PCB: 60mm X 20mm

-5V @100mA Switched Capacitor Converter – [Link]

5V to 12V @400mA Boost Converter

The circuit presented here is about a boost converter based on LM2698. It is a PWM boost converter from Texas instruments. LM2698 can also be used as a flyback converter. The current mode architecture is a special feature of LM2698, which provides superior line and load regulation. This circuit is capable of a supplying a output voltage of 12V for a input range of 4.5V to 5.5V.

Specifications

  • Input voltage: 4.5VDC to 5.5VDC
  • Output voltage: 12VDC
  • Output current: 0.4A
  • PCB:45mm X 30mm

5V to 12V @400mA Boost Converter – [Link]

5V Regulator Cap for 9V battery

David Cook built a 5V regulator to sit atop a 9V battery:

For quick portable projects and temporary hacks, it is often faster to reuse a simple 5V regulator circuit than to integrate a power supply into the device design. My toolbox has an LED tester and magnifier light, so why not add a convenient 5V regulator cap to the collection? There are nicer ones on the market that have surface mount components, but half the fun of an electronics hobby is creating something basic in your own style. This double-decker board with flashing LED power indicator allowed me to experiment with flush battery snaps and board interconnects.

5V Regulator Cap for 9V battery – [Link]

5V @3A Switching Power Supply

This circuit is about a buck regulator which can produce an output of 5V for a input voltage ranging from 7V to 40V. LM2576 is a monolithic IC and it acts as the heart of this circuit. This IC has a potential of delivering an output current up to 3A and requires less number of external components. It is highly efficient when compared to other three terminal linear regulators and small in size.

Features

  • Input(V): 7VDC to 40VDC
  • Output(V): 5VDC
  • Output load: 3A
  • PCB:36mm X 35mm

5V @3A Switching Power Supply – [Link]