Products category

SensorTile, An Accurate Development Kit For Biometric Wearables

Valencell, a biometric wearable sensor technology company, in partnership with STMicroelectronics, an electronics and semiconductor manufacturer, announced a new highly accurate and scalable development kit for biometric wearables. The kit combines ST’s compact SensorTile turnkey multi-sensor module with Valencell’s Benchmark biometric sensor system.

The SensorTile is a tiny IoT module (13.5mm x 13.5mm) that features a powerful STM32L4 microcontroller, a Bluetooth Low Energy (BLE) chipset, a wide spectrum of high-accuracy motion and environmental MEMS sensors (accelerometer, gyroscope, magnetometer, pressure, temperature sensor), and a digital MEMS microphone.

The on-board low-power STM32L4 microcontroller makes it work as a sensing and connectivity hub for developing firmware and shipping in products such as wearables, gaming accessories, and smart-home or IoT devices.

Key Features:

  • FCC (ID: S9NSTILE01) and IC (IC: 8976C-STILE01) certified
  • Included in the development kit package:
    • SensorTile module
    • SensorTile expansion Cradle board equipped with audio DAC, USB port, STM32 Nucleo, Arduino UNO R3 and SWD connector
    • SensorTile Cradle with battery charger, humidity and temperature sensor, SD memory card slot, USB port and breakaway SWD connector
    • 100 mAh Li-Ion battery
    • Plastic box for housing the SensorTile cradle and the battery
    • SWD programming cable
  • Software libraries and tools
    • STSW-STLKT01: SensorTile firmware package that supports sensors raw data streaming via USB, data logging on SDCard, audio acquisition and audio streaming. It includes low level drivers for all the on-board devices
    • BLUEMICROSYSTEM1 and BLUEMICROSYSTEM2: STM32Cube expansion software package, supporting different algorithms tailored to the on-board sensors
    • FP-SNS-ALLMEMS1 and FP-SNS-MOTENV1: STM32 ODE functional packs
    • ST BlueMS: iOS and Android demo Apps
    • BlueST-SDK: iOS and Android Software Development Kit
    • Compatible with STM32 ecosystem through STM32Cube support

“Valencell’s Benchmark solution leverages the high accuracy of ST’s MEMS sensor technology along with SensorTile’s miniature form factor, flexibility, and STM32 Open Development Environment-based ecosystem,” said Tony Keirouz, Vice President Marketing and Applications, Microcontrollers, Security, and Internet of Things, STMicroelectronics. “Combined, SensorTile and Benchmark enable wearable makers to quickly and easily develop the perfect product for any application that integrates highly accurate biometrics.”

Integrating ST’s SensorTile development kit with Valencell’s Benchmark sensor technology simplifies the prototyping, evaluation, and development of innovative wearable and IoT solutions. That’s done by delivering a complete Valencell PerformTek technology package, ready for immediate integration and delivery into wearable devices. The collaboration with ST expands on previous work that incorporated the company’s STM32 MCUs and sensors into Valencell’s Benchmark sensor system.

“Working with ST has allowed us to bring together the best of all sensors required to support the most advanced wearable use cases through our groundbreaking Benchmark sensor system,” said Dr. Steven LeBoeuf, president and co-founder of Valencell.

The kit is in volume production and is available for about $80. You can order it and get more information and technical details through the official page.

Source: ElectronicSpecifier

Open Source Meets Hardware: Open Processor Core

SiFive, the first fabless provider of customized, open-source-enabled semiconductors, had recently announced the availability of its Freedom Everywhere 310 (FE310) system on a chip (SoC), the industry’s first commercially available SoC based on the free and open RISC-V instruction set architecture.

The Freedom E310 (FE310) is the first member of the Freedom Everywhere family of customizable SoCs. Designed for microcontroller, embedded, IoT, and wearable applications, the FE310 features SiFive’s E31 CPU Coreplex, a high-performance, 32-bit RV32IMAC core. Running at 320+ MHz, the FE310 is among the fastest microcontrollers in the market. Additional features include a 16KB L1 Instruction Cache, a 16KB Data SRAM scratchpad, hardware multiply/divide, a debug module, flexible clock generation with on-chip oscillators and PLLs, and a wide variety of peripherals including UARTs, QSPI, PWMs, and timers. Multiple power domains and a low-power standby mode ensure a wide variety of applications can benefit from the FE310.

Furthermore, SiFive launched an open source low-cost HiFive1 software development board based on FE310. As part of this availability, SiFive also has contributed the register-transfer level (RTL) code for FE310 to the open-source community.

The Arduino compatible HiFive1 was live on a crowdfunding campaign on Crowdsupply  and the board reached around $57,000 funding. Check this video to know more about HiFive1:

SiFive is now fulfilling a dream of a lot of developers: a custom silicon designed just for you! With the RTL code open, chip designers are now able to customize  their own SoC on top of the base FE310 by accessing the open source files provided on Github. But don’t worry, even if you don’t have the expertise needed to develop your own core, SiFive is offering a new service called “ chips-as-a-service” that can customize the FE310 to meet your unique needs. All you need is to register here dev.sifive.com, try out your ideas and finally contact the company to finalize the design of your new chip.

This service has completely a new business model for silicon chips businesses, and SiFive is willing to establish a “chip design factory” that can handle 1000 new chip designs a year. It is said that SiFive can start manufacturing the cusomized MCUs in less than 6 months after making sure that each use case is compatible with the Freedom E310 core.

“We started with this revolutionary concept — that instruction sets should be free and open – and were amazed by the incredible rippling effect this has had on the semiconductor industry because it provided a viable alternative to what was previously closed and proprietary,” said Krste Asanovic, co-founder and chief architect, SiFive. “In the few short months since we’ve announced the Freedom Platforms, we’ve seen a tremendous response to our vision of customizable SoCs. The FE310 is a major step forward in the movement toward open-source and mass customization, and SiFive is excited to bring the opportunity for innovation back into the hands of system architects.”

Opening the source of processors’ core has its pros and cons for SiFive. A new business model is assigned to SiFive due to the “chips-as-a-service” feature but in the same time it will open up some new ventures for smaller companies and hardware manufacturers to compete with the market dominating companies. Open source MCUs will bring a lot of updates to the hardware development scene and will pave the way for a whole new business of customized chip design provided by talented hardware system developers and architects.

To know more about the custom design feature visit the developers section of SiFive dev.sifive.com. Documentation of the SiFive new chip is available here and also source codes and files of the RTL code are provided at Github.

iKeybo, The Advanced Projection Keyboard

Serafim is a company of some talents and experts in optoelectronics industry, and it aims to offer affordable, useful, and cool consumer electronics for a better computing experience. The latest amazing product by Serafim is: iKeybo!

iKeybo is a virtual projection multilingual keyboard that can turn any flat surface into a keyboard. iKeybo can work as a piano too.

Check this video to see iKeybo in action:

iKeybo uses a non-contact technology and has 90Hz frame rate. It turns your 5 inch display into 12 in a surface since the projection surface is 268*105mm. The keyboard consists of 78 keys where other competitors only have 66. It has a instant reaction around 11.11ms what makes it more convenient while using.You can use iKeybo with you PC, mobile devices and tablets since it works via Bluetooth and USB.

For developers, a SDK for iOS and Android is available! It supports all functions of touch screen which include single tap, double tap, rotate, press and drag, press and hold. Install the framework and make connections with your apps.

It differentiates from other laser projection keyboard because it implements a new patented technology that uses camera sensor and double linear sensors for faster calculation speed and less energy.

“What distinguish iKeybo from traditional projection keyboards is that it is the world’s first laser projection “piano” that allows users to create music instantly with piano, guitar, bass, or drums. When not in use, iKeybo can also serves as an external charger to power up devices with 10 hours of battery life. Its cellphone stand design is also perfect for desk or table to watch movies or start live streaming.“ – iKeybo team

iKeybo Features

4 Language Layouts you can choose from 4 different languages keyboard layouts (English, Spanish, Arabic, and Chinese) to type the language special characters that you need. You can’t add more language layouts to your iKeybo because each layout projection needs a different optical lens. Once you select a language edition or a bilingual one it will be fixed.

4 Musical Instruments with iKeybo you can play piano, guitar, bass and drums! Check this piano demo video:

Round Key Designs a special design to make it easier for typing. Other competitors use square keys with no space in between that make it possible to do a lot of typos.

Portable Charger & Cell Phone Stand  iKeybo also serves as an external charger to power up your devices with 10 hours of battery life. You can also use it as your cellphone stand to turn your mobile device into a computer within just a second.

iKeybo is not the first optoelectronics product by parent company Serafim. Check this page to know more about its products.

iKeybo is now live on a Kickstarter campaign and still has 10 days to go! You can pre-order your iKeybo with one language layout and piano for $89 and also you can get a bilingual iKeybo for $99. More information are available at the campaign page.

ONO, $99 Smartphone-Powered 3D Printer

Born in 2014 from the simple idea of making 3D printing accessible for everyone, Filippo Moroni and Pietro Gabriele worked on new technology to develop a high quality 3D printer that was affordable and easy to use. Their goal was to make the most diffused printer in the world and to develop a worldwide community around it. After 2 years of hard work, ONO has developed and grown into the first 3D printer of its class. ONO is the first ever smartphone-powered 3D printer that depends on your smartphone screen resolution in its printed outputs.

Similar to DLP (Digital Light Processing) resin printers, ONO needs light to harden the resins. But instead of using an embedded source of light, it uses the light of your smartphone screen to power the operation. Thanks to the customized patented resins ONO uses, they can react perfectly to white light coming from your phone, thus there’s no need for ultra violet light that is used for resin printers. All you need to do is to place your mobile on the phone pad and ONO will do the rest.

ONO has the following components:

  1. LED interface – The logo on the top of the printer flashes to show the status of the print
  2. Motor housing – The top part of the printer which controls the raising of the build plate
  3. Z-axis actuators – Drive gears connected to the motor and the build plate
  4. Build plate – Aluminum plate where the part adheres
  5. Resin tank – Removable tank where resin is poured prior to printing
  6. Printing film – Thin, clear film which seals the resin tank
  7. Adjustable base – The base can be raised or lowered so that the phone screen will sit flat against the printing film.
  8. Phone pad – A soft pad that helps level phones with protruding cameras

 

The affordable $99 3D printer is portable and can be charged using any USB charger whether connected to wall plugs or a power bank. You can clean ONO easily thanks to the removable resin tank and the printing films.

ONO has the following specifications:

  • Printer Dimensions: 180 x 128 x 185 mm – 7.0 x 5.0 x 7.3 in
  • Printing Volume: 124 x 72 x 52 mm – 4.8 x 2.8 x 2.0 in
  • Phone compatibility: Any phone with a screen size below 5.8”
  • Accuracy: Up to 42 micron XY resolution, Up to 100 micron Z resolution
  • (XY resolution depends on the resolution of the phone screen.)
  • Printing Speed: 12 mm per hour

It’s a simple process, after downloading the app you have to choose the design to be printed and then plug in through the headphone jack. Finally fill the resin tank with the resin you prefer. ONO is providing multiple kinds of resins for different uses: solid, flexible, translucent, castable and clear! The $15 resin bottle is said to be able to bring out around 10 simple 3D printed objects, and the amazing thing is that unused resin can be recycled for future prints!

“We believe 3D printing should be accessible to everyone. This is why we set out to design ONO, the first ever smartphone 3D printer.” – ONO team

You can check this video by Adafruit to know more about ONO during World Maker Faire 2016 featuring Giacomo Fornasini:


ONO is a rebrand of OLO, the first edition of the printer that was live on Kickstarter one year ago. More details about ONO can be found at the official website where you can sign up on its newsletter to be updated and to know when ONO will be available to buy.

Butterfly & Ladybug, STM32L4-Based Arduino-Programable Development Boards

Arduino boards are very useful for beginners to get started with building hardware projects. But at some point, more powerful controller than the Arduino’s 8 MHz one will be needed, featuring faster clock rate, floating point engine, and rich peripherals.

As Kris Winer found, the code editors and compilers for these controllers aren’t as simple as Arduino IDE. So using them may be a very frustrating experience.

Kris collaborated with Thomas Roell to solve that by developing new development boards that allow developers to use and program STM32L4 MCUs with the simplicity of Arduino IDE.

They started on Tindie with Dragonfly, a small (0.7” x 1.4”) development board for the high-performance, ultra-low-power line of 32-bit microcontrollers, STM32L4X6 family. Dragonfly uses the STM32L476RE 64-pin LQFP chip package with 512 kB of high-speed flash memory, 128 kB SRAM, running at up to 80 MHz with a single-precision floating point unit.

Dragonfly Development Baord

Two new boards are added to the Dragonfly family, the Butterfly and the Ladybug. These boards are small, low-cost development boards with simple, open-source designs that will allow approximately anyone to make use of the STM32L4 in their own custom applications. They rely on a single, inexpensive 32.768 kHz crystal oscillator and don’t require the ST-Link built into the STM32 Nucleo boards. Applications can be developed using the Butterfly and Ladybug development boards which provide access to all GPIOs and peripherals of the STM32L4.

Butterfly (Top) & Ladybug (Down) Development Boards

The Butterfly is 0.7” x 1.4” board and it uses the STM32L433 80 MHz ARM Cortex M4F 48-pin QFN package. While the Ladybug is 0.6” x 1.1” and uses the STM32L432 QFN package for more rational routing.

Technical specifications:

  • Microcontroller: STM32L4 ARM Cortex M4F
  • Clock speed: 1, 2, 4, 8, 16, 24, 32, 48, 64, 80 MHz
  • Operating voltage: 3.3V
  • I/O pin limits: most pins 5.0 V tolerant, 20 mA
  • Digital I/O pins: 22, with 11 PWM (Butterfly), 13, with 10 PWM (Ladybug)
  • Analog input pins: 6 (Butterfly), 5 (Ladybug), 12-bit ADC channels
  • Analog output pins: 2 12-bit DAC
  • RTC: 1 ppm accuracy
  • Flash memory: 256 KB SRAM: 64 KB
  • Voltage regulator: 3.3-5.5V input / 3.3V, 150 mA output
  • Dimensions: 1.4 x 0.7″ (Butterfly), 1.1 x 0.6″ (Ladybug)

A kickstarter campaign had been launched to increase the production volume to allow rock bottom pricing. But unfortunately, the campaign ended without reaching the specified goal.

Butterfly and Ladybug were designed for ultra-low-power applications and for small LiPo battery operation. There is a port for a JST battery connector on the board as well as a Vin at the board edge that connects to the battery anode so peripherals like haptic motors or displays can be powered directly from the battery, or the board can be directly powered from Vin.

Butterfly Board Pinout
Ladybug Board Pinout

The boards are fully open source so anyone can get the source files and make his own easily. To find more details about the project visit its page at hackaday, and at OSH Park.

Embed:

Dobot M1, All-in-One Multifunctional Robotic Arm

Shenzhen Yuejiang Technology Co. Ltd (“Yuejiang”) is a leading robot arm solution provider in China. Yuejiang is established in July 2015 in Shenzhen, China by 5 dedicated robotics engineers with the mission of facilitating the development and upgrading of the industrial robotic arms solutions in China and continuously developing the extensive applications in this arena. Yuejiang’s newest product is Dobot M1!

Dobot M1 is an all-in-one industrial robotic arm based on SCARA, with many interchangeable heads to 3D print, laser engrave, solder and pick & place unlimited applications. It also has computer vision ability.

Check this video featuring the amazing capabilities of Dobot M1:

Dobot M1 is the second edition of Dobot 1.0. Dobot 1.0 featured 7 different ways of controlling a robotic arm, including mouse control, vision control, EEG control, mobile APP, Leap motion control and gesture control, that was targeting makers as a new way of personal fabrication. Dobot 1.0 Kickstarter campaign raised an incredible $615,000, shattering a goal of only $36,000, Now Dobot M1 is extending its audience to the education, self-employers and factories sectors providing them an enhanced edition of the multifunctional arm.

Dobot M1 comes to solve the problem that industrial robot arms with such specifications are usually very expensive. Providing Dobot M1 with a price around $2000 will change the manufacturing equation forever. Dobot M1 will be the greatest tool to be added to your working space to try some light manufacturing professionally.

The toolheads included with the arm give multiple choices of operation, whether a 3D printer, gripper hand, laser engraver and 4th axis attachment. Once, it is a 3D printer with 400mm radius and 200mm height printing area itself, and you can extend this printing area with a 1m long trail. Then it is a laser engraver that line engrave and shade engrave your favorite symbols and pictures precisely thanks to the PWM laser it uses.

Attaching it with a camera, you are giving Dobot M1 eyes to process the mission given. It has integrated visual API that can be simply work with OpenCV or your own visual system. It also can be a precise pick and place machine, can do two things at the same time with the dual arm operation feature and can move around!

Dobot M1 support Bluetooth and WiFi, you can connect more than one Dobot together to function simultaneously with the same of multi functions. You can also control them using a mobile app. No need to worry about bein an expert to cope with Dobot M1, you can program it with a visual and easy programming language, and furthermore you can teach it the moves you want it to do with handhold teaching and then it will mimic them. These are the full specification of Dobot M1.

What makes Dobot M1 special is its expandability, it has a standardized head tool port, protocol, API, SDK, and extension ports. It is also considered affordable in comparison with its competitors.

“One simple fact: an industrial SCARA type robotic arm prices between $10,000 and $20,000, two-year payback period. For many small businesses constantly adjusting their production technique, this is too much to afford, not to mention those creative individuals who want a professional making machine. With less than $2,000, and 3 months of payback period, Dobot M1 is here to fill the missing puzzle. With more functions and features, Dobot M1 is able to integrate in more steps of production, helping you save more budget.”

Dobot M1 is now live on a Kickstarter campaign and it only has 3 days to go! Hurry up and pre-order an amazing addition to your fablab or co-working space. You can get the standard kit with two toolheads of your choice with around $1600. It will be a nice automated all-in-one tool for hardware startups that are wasting time and money on different tools and materials doing most of the work by themselves.

For more details about Dobot M1 check the official website and the crowdfunding campaign page.

Control AC Voltages Safely And Easily with Sugar Device

Sugar Device is a tool designed to control AC Voltage and it promises to change the way you control AC applications forever.
Sugar team is targeting hobbyists, students, teachers and engineers to push their application to the next level, since it makes AC control easy, safe and compatible with a lot of development platforms. The mechanical case that comes with Sugar is offering protection to users while using AC voltages and preventing any electrical shock resulted by misuse.

You can control AC voltage using Sugar with two different ways: ON-OFF switch, and AC output voltage control. You can power Sugar using the AC C14 cable. This voltage provided is used to power the load connected and the internal circuits. The fuse holder is accessible, you can replace it easily whenever you need.

For the output, Sugar is providing a universal output socket to connect your load, and it is compatible with all AC power cable types. Sugar can work with 110V/220V and with 50Hz/60Hz. You can switch between the two options using a switch provided with two indicator LEDs.

Sugar Device also can be connected with 3.3V and 5V development boards like Arduino, Raspberry Pi, and Beaglebone using the RJ12 cable. Sugar had designed  a RJ Connector breakout to make it possible to connect your board and it will be available in all kits. Controlling the AC loads using your PWM pins and Sugar will be so simple.

This 150x120x47 mm size device supports WiFi and Bluetooth and is IoT ready. For example, ESP8266 can directly control Sugar Device since it has PWM output with Frequency of 1KHz.

Sugar Device comes in two editions: Sugar 300, a white device that control up to 300W, and Sugar 1000, a black one that can control up to 1000W. The second one is offered for hackers and professionals where the first is for newbies.

Sugar Device is now live on a crowdfunding campaign on Indiegogo and still has a month to go. You can pre-order your Sugar 300 with a Power cord C14, RJ12 Cable, Sugar RJ Breakout and two AC fuse for only $49! Check the campaign video for more information.

In this video you can watch Sugar Device in Action, check it out!

Sugar device is the tool you need to expand the scope of your projects and control AC loads safely. Your dream of making your home smart can come true now with the use of this device. This device had came to life due to a cooperation with Fablab dynamic in Taipei, Taiwan. Such a cooperation will make it uncomplicated for makers to produce their own devices. Mohannad Rawashdeh and his team had tested many applications and used different platforms to ensure that Sugar is safe, practical and easy for everyone to use.

“When I was looking  for FabLab in Taiwan, I found FabLab Dynamic. They offered me a free space inside the lab to work and offered me all help I need to find component resources, using machines and instruments and contact with designers I need for my project” – Mohannad Rawashdeh, founder of Sugar Device and an electronics engineer.

You can check the campaign page to know the offers and full specifications. More information are provided on Sugar Device website. Many tutorials are added to this page and source files will be added soon on Github.

SmartPID, The New Open Platform For Your Projects

ARZAMAN Smart Engineering is a small innovative Italian startup company that develops smart hi-tech solutions, by working on specific ideas for a specific hobbyist market. ARZMAN has just launched a new product: SmartPID!
SmartPID Controller is a hi-tech product that facilitates temperature and process control. It has the ability to control any thermos-regulated process, heating or cooling, and also it can control any application in your home. In addition, it is compatible with Arduino, so you have the chance now to move your applications to the next step!

It is provided with two apps: smart thermostat app and the smart brewing app. The smart thermostat app can be used for any thermal regulated process, while the brewing app is is a vertical application that is dedicated to brewing process automation from mashing to boiling.

SmartPID is IoT-ready,cloud-connected, and runs PID algorithm. In addition, it has the  following features:

SmartPID is powered by SAMD21 32-bit ARM® Cortex®-M0+ by Atmel and it has 8 Mb EEPROM and ESP8266 WiFi module with many other specifications and advantages as shown in the picture.

It is totally compatible with Arduino since it
has SAMD21 processor, a dedicated USB bootloader and board definition, can be programmed with Arduino IDE and can use the libraries available.

SmartPID comes with a mobile app to control and monitor the project installed. Check this video to see the app in action.

“SmartPID is not a simple controller or thermostat, is more an “open platform” powerful and flexible where the resources and I/O can be used for different applications, different environments and integration. My idea is to develop an ecosystem of “vertical” applications on top of a common set of features” -Davide Arzarello, founder of ARZAMAN Smart Engineering.

SmartPID is now live in a crowdfunding campaign on Indiegogo and it has only one week to go. You can pre-order it now preloaded with the thermostat app for around €89. Check SmartPID website and the campaign page to know more details and specifications. You can see SmartPID in action in this promo video:

IkaScope – a new wireless oscilloscope probe

ikalogic.com launched “IkaScope” a new wireless oscilloscope probe that is able to make measurements directly on your mobile phone or your laptop. IkaScope transfers measured signals over high speed wifi connection and it will remember your home or office access points. It will work with iOS, Android and Windows devices (OSx will also be supported).

Specifications

  • Input range 10 mV/div. → 10 V/divMaximum input voltage 80 Vpp
  • Bandwidth 25 MHz
  • Timebase 100 ns/div → 10 s/div
  • Input impedance 1MΩ
  • Input Coupling AC, DC, GND
  • Trigger Rising or falling slopes
  • Digital specifications
  • Sampling rate 200 MSPS
  • Resolution 8-bits
  • Buffer 4K pts (4 * 1K Pts)1

IkaScope is a wireless oscilloscope probe, all contained in an ergonomic stylus. It uses a wifi connection to transfer signals to be displayed on any connected screen (Laptop, Smart-phone, Tablet or Desktop Computer). It’s equipped with a battery that can be recharged via any USB port. Being battery operated, IkaScope always provides 4000V+ galvanic isolation from power mains (even when being recharged).

IkaScope – a new wireless oscilloscope probe – [Link]

JeVois, The Open-Source Smart Vision Camera

JeVois, which can be translated from French as: I see, is an open-source quad-core camera that can be connected easily with your project whether you are using Arduino, Raspberry Pi or just running it on your PC. JeVois contains a video sensor, quad-core CPU, USB video and a serial port in only 1.7 cubic inches. To start working with your JeVois you only need to insert a microSD card loaded with the provided open-source machine vision algorithms and then connecting it to your computer. It will work immediately just by opening a camera software.

The process is as follows: video captured by the camera sensor, processed on JeVois processor, and results are sent over USB to the host computer or to the micro controller.

On your computer, you can use any camera software to see the results, also you can check different vision algorithms by selecting different resolutions and frame rates.

It has the following software and hardware frameworks:

“For ease of programming and configuration, all of the operating system, core JeVois software, and any necessary data files are stored on a single high-speed Micro-SD card that can easily be removed and plugged into a desktop or laptop computer.  The JeVois software framework combines custom Linux kernel drivers for camera sensor and for USB output, written in C, and a custom high-level vision processing framework, written in C++-17. “

Easy to integrate  with other open-source libraries, including tiny-dnn, OpenCV, boost, zBar, Eigen, turbojpeg, etc.  This framework is scalable since the operating system infrastructure is built using the buildroot framework where adding and using different libraries is easy. New vision modules can be added to the core of JeVois thanks to the fact the core software is managed by cmake. Thus, you can customize the vision algorithm you would like to run your JeVois.

In addition, it is easy to use, for example only 4 Wires are needed to connect it with Arduino: 5 or 3.3 V, GND, Tx and Rx!

JeVois is now live in a Kickstarter Campaign, check this video for better understanding:

For more information about the specifications and technical details, check the campaign page. You can pre-order your JeVois now for $45, there are still 20 days to go.

JeVois started as an educational project, to encourage the study of machine vision, computational neuroscience, and machine learning as part of introductory programming and robotics courses at all levels (from K-12 to Ph.D.). It is funded by Science Foundation (NSF) and the Defense Advanced Research Projects Agency (DARPA).

If you are interested in developing the core of JeVois check the documentation provided here.