Products category

DS28EC20, A Serial 1-Wire 20Kb EEPROM

The American manufacturer of analog and mixed-signal integrated circuits, Maxim Integrated, has developed a new serial EEPROM memory that operates from single-contact 1-wire interface.

The DS28EC20 is a 20480-bit, 1-Wire® EEPROM organized as 80 memory pages of 256 bits each. An additional page is set aside for control functions. Data is written to a 32-byte scratchpad, verified, and then copied to the EEPROM memory.

The 1-Wire is a device communications bus system that provides low-speed data, signaling, and power over a single conductor. This technology uses only two wires; data and ground. It is similar in concept to I²C, but with lower data rates and longer range. It is typically used to communicate with small inexpensive devices such as digital thermometers and weather instruments.

DS28EC20 features:
  • 20480 Bits of Nonvolatile (NV) EEPROM Partitioned into Eighty 256-Bit Pages
  • Individual 8-Page Groups of Memory Pages (Blocks) can be Permanently Write Protected or Put in OTP EPROM-Emulation Mode (“Write to 0”)
  • Read and Write Access Highly Backward-Compatible to Legacy Devices (e.g., DS2433)
  • 256-Bit Scratchpad with Strict Read/Write Protocols Ensures Integrity of Data Transfer
  • 200k Write/Erase Cycle Endurance at +25°C
  • Unique Factory-Programmed 64-Bit Registration Number Ensures Error-Free Device Selection and Absolute Part Identity
  • Switchpoint Hysteresis and Filtering to Optimize Performance in the Presence of Noise
  • Communicates to Host at 15.4kbps or 90kbps Using 1-Wire Protocol
  • Low-Cost TO-92 Package
  • Operating Range: 5V ±5%, -40°C to +85°C
  • IEC 1000-4-2 Level 4 ESD Protection (8kV Contact, 15kV Air, Typical) for I/O Pin

Blocks of eight memory pages can be write-protected or put in EPROM-Emulation mode, where bits can only be changed from a 1 to a 0 state. The life-expectancy of the DS28EC20 is specified at more that 200 k erase/write cycles at 25 °C. The I/O pin has IEC 1000-4-2 Level 4 ESD protections (8 kV contact, 15 kV air).

Applications that can use the DS28EC20:
  • Card/Module Identification in Rack-Based Systems
  • Device Authentication
  • IEEE 1451.4 Sensors
  • Ink and Toner Cartridge ID
  • Medical and Industrial Sensor Identification/Calibration
  • PCB Identification
  • Smart Cable

Ordering DS28EC20 is available for about $1.7 per chip through Maxim website. You can also get design resources and technical documents of the chip.

HPS140MK2, The New Handheld Oscilloscope

Velleman Inc., a producer and a distributor of electronics, has produced a new handheld oscilloscope with the same power of its HPS140, but with smaller size and modern design.

HPS140MK2 is a 11.4 x 6.8 x 2.2 cm versatile component tester that fits in your pocket. This small oscilloscope features a real time 40 MS/s sampling rate with up to 10 MHz bandwidth and 0.1 mV sensitivity.

HPS140MK2 features:

  • 40 Mega samples/sec in real time
  • Bandwidth up to 10 MHz
  • Full auto range option
  • Sensitivity down to 0.1 mV
  • Signal markers for amplitude and time
  • Memory hold function
  • Direct audio power measurement

The device is powered by 4 AAA batteries. On the front panel you can find four buttons; menu, up, down, and hold. The display is used to menu options and received signal. On the top side you will find an on/off switch and a BNC input connector that can accept maximum input of 100Vp.On the bottom side there is an X10 probe test signal.

Specifications:

  • Bandwidth: up to 10 MHz (-3dB or -4dB at selected ranges)
  • Input range: 1 mV to 20 V / division in 14 steps
  • Input coupling: DC, AC and GND
  • Real-time sample rate up to 40 MS/s
  • AD resolution: 8 bits
  • Time base: 250 ns to 1 h per division
  • Auto set-up function (or manual)
  • Probe x10 readout option
  • Readouts: DC, AC + DC,True RMS, dBm, Vpp, Min-Max. (±2.5%)
  • Audio power measurement from 2 to 32 ohms
  • Hold & store function
  • Time and voltage markers readout
  • Max. 100 Vp AC + DC
  • Monochrome OLED
  • Power supply: 4 x 1.5 V AAA batteries (not incl.)
  • Operating time: up to 8 hours on quality Alkaline batteries
  • Dimensions: 114 x 68 x 22 mm
  • Weight: 166 gr
  • Current consumption: max. 150 mA

The product is available for $150 on Velleman store. Additional parts will be available soon including component tester ‘HPS141’ to receive all useful information about resistors, transistors, diodes and more, including their pin out identification, and the ‘HPSP1’ protective pouch.

RELATED POSTS

Send Touch Over Distance With HEY Bracelet

HEY is an innovative bracelet that really makes you feel connected to a loved one. It uses a unique technology to send your touch as far as needed. It’s the first bracelet that mimics a real human touch, not by producing a mechanical vibration or buzzing sensation, but an actual gentle squeeze.

On Valentine’s Day the stylish piece of smart jewelry was launched on Kickstarter and within one hour it was already ‘trending’. Check the campaign video:

The bracelet incorporates advanced technology that communicates through Bluetooth with your smartphone. The ingenious design  ensures that a touch wouldn’t be sent accidentally. In order to send a message you should touch the bracelet in two places and it will be transferred directly to your phone and from there to the connected HEY bracelet anywhere in the world.

Via Bluetooth HEY is connected to an app on your smartphone. This app makes sure all your little squeezes reach the other bracelet directly. It also helps you pair the bracelets easily, fast and without any hassle. And last but not least it keeps track of your love stats. For instance the distance between you and your loved one or the last time you were together. If desired, these features can be turned off. In the future more features will be added to the app.

HEY is invented by Mark van Rossem. He looked at the current world of communication and saw that one thing was missing. And that thing was touch. People communicate through technology 24/7, but there is always a physical distance separating them. So Mark set himself the seemingly impossible goal to send touch at great distances and came up with the idea for HEY. Together with successful entrepreneur, David van Brakel, he gathered a team of creative and technical professionals that have all earned their credentials in their field of expertise. Together they want to build products that bring people closer.

“From a simple touch like squeezing someone’s hand, to hugging, social touch is important in the way we maintain healthy and happy social relationships with the people that we care about most.” – Gijs Huisman, who collaborated in developing bracelet, is an expert at the University of Twente in the field of Social Touch Technology and has been researching haptic technology (touch by tech) for five years now.

No need to worry a lot about the safety of the bracelet electronics since the design is weatherproof. With only 30 minutes of charging, you will be able to send touches for around 3 weeks!

HEY adds a completely new dimension to relationships and more haptic products will be developed in the near future. For more information and updates, check the official website and the Kickstarter campaign. 35 days are left to pre-order 2 HEY bracelets with the Kickstarter deal for €83 which is 30% of the retail price.

Tinusaur, $3 ATtiny85 Microcontroller Board And Assembly Kit

Tinusaur is an Atmel ATtiny85 microcontroller board that comes in parts, as a kit, so you can solder it yourself and then program it. This small microcontroller board can run Arduino and its goal is to have a simple, cheap and quick-start platform for everyone interested in learning and creating things.

Tinusaur comes as an assembly kit, in parts, all in a small plastic bag, so you have to solder it yourself. In order to program this microcontroller board you will need a programmer like AVR ISP programmer, you can also use an Arduino to program the ATtiny microcontroller.

These are the components of Tinusaur standard kit:

  • PCB: Tinusaur PCB
  • MCU, Attiny85: Atmel AVR ATtiny85 microcontroller
  • Socket, DIP-8: DIP-8 socket for MCU
  • H1, Header: Header 2×4, Female
  • H2, Header: Header 2×5, Female
  • ISP, Header: Header 2×5, Male, for ISP
  • RESET, Button: Tactile push button, for RESET
  • Power, Header: Header 1×2, Male, for external power
  • Battery, Header: Header 1×2, Male, for battery power on/off
  • Battery, Jumper: Jumper, 2-pin, for battery power on/off
  • C1, Capacitor: Capacitor 100uF, Low profile 5×5 mm
  • C2, Capacitor: Capacitor 100nF, Small
  • R1, Resistor: Resistor 10K, Small, 1/8W
  • Battery holder: Battery holder for CR2032
  • Battery 3V: Battery 3V, CR2032

There is also the Tinusaur Starter – another kit that has everything included in the Tinusaur Board plus a USBasp programmer, plus few other useful things.

Tinusaur was launched 3 years ago and it is now used  in schools and universities to educate young people in both hardware and software. The team behind Tinusaur had launched an Indiegogo campaign to produce more of Tinusaur boards and bring the cost down to $3 per basic board and allow more people to be able to get them. A recent crowdfunding campaign was held by the team, it didn’t meet its goal plus it had the price multiplied by 3!

With just $3 you can get now the Lite edition of Tinusaur, the same components as the standard kit excluding the battery and its holder. You can get the Standard one for $4 and the Starter one for $6.

This Tinusaur is open source, both the hardware and the software, and you can check out the source files right here https://bitbucket.org/tinusaur. 3 days are left to end this crowdfunding campaign, so if you are interested in getting your own Tinusaur with that amazing price you should hurry up! More details can be found at the official product page, getting started page and tutorials.

CTRL, The Industrial Robot On Your Desktop

CTRL the robot is a desktop-sized robot arm that can do a lot! It enables your computer to perform manipulation of real objects via software and gives you access to technology that has been locked away in large corporations factories.

Check this video to see the amazing features of CTRL.

CTRL was launched on a Kickstarter campaign that unfortunately didn’t reach its goal of AU$ 215,000. The early bird product was sold for AU$ 699 (~ $540) and you were able to get two robots for AU$ 1598 (~ $1230).This robot arm is a fraction of the price of similar robots you might see in factories. It was developed by Robotics Evolved to be an affordable robot arm.

Unveiled at CES 2017, this desktop-sized robot arm aims to make robotics more accessible to the masses. The device is open-source and can be run on the programming language of the user’s choosing.  For those unfamiliar with code, CTRL can also learn to replicate movements when manipulated by hand.It ships with example applications with source code and ‘Motion CTRL Studio’ software to easily run diagnostics, visualise movements and script interactively.

CTRL is equipped with a gripping tool but the company plans to expand attachment offerings to include options like spray nozzles and engraving tools. Also in the box is a gripping tool, with a range of interchangeable arm tools to follow including suction pads, spray nozzles, laser engraving tools and more. The team has also made this technology open-source, themechanical, electronic and firmware source, so users can invent their own tools and 3D print them.

With a full range of movement through 6 axis articulation, CTRL the Robot can lift and carry with incredible precision. It uses specially designed brushless servo motors for smooth motion. Even though it roughly stands at the height of a piece of A4 paper, it can reach as far as a human arm and carry up to 1.7 pounds (750 grams). The team used a custom cycloid gearbox design with a pass-through encoder that was conceived, designed and prototyped. The gearbox is highly efficient and can be back driven. It has multiple contact points and offers zero backlash.

Robotics Evolved was seeking funding through a Kickstarter campaign and maybe they should now find another way to bring this product to life again. You can sign up on their newsletter to keep updated with the next steps for CTRL!

Sources: Yahoo Finance, Kickstarter Campaign

Low-Cost FPGA With Reconfigurable Electronics Feature

Iolinker is a cheap 64 FPGA board with a MachXO FPGA that functions as a dynamically configurable IO matrix. Its main functionality, besides IO extension, is to dynamically set up a matrix of GPIO connections, that allow direct pass-through of high-frequency signals. Circuits can thereby be configured and programmed on the fly. There are UART / SPI / I2C connections that allow for easy integration of up to 127 chips connected in parallel.

Thanks to the open source library, Iolinker allows developers to create reconfigurable, easy to self test electronics within minutes. It can be used to be an IO extender and can output PWM signals. In addition, its revolutionary “IO linking” feature allows to dynamically pass through high-speed signals between IOs, better than any microprocessor ever could.

Check this teaser about the new board:

Iolinker has the following specifications:

  • Reprogrammable FPGA board with Lattice LCMXO3L-4300E-5UWG81CTR50
  • Preprogrammed and usable out of the box as your IO interface of choice.
  • 49 GPIOs for PWM or IO extension usage, VCCIO is 3.3V.
  • Boards can be connected in parallel, to create endless IO extension.
  • IOs can be linked to each other, i.e. you tell the FPGA to connect them, and it forwards the input signal from one pin to another. (Read more about the iolinker chip function.)
  • UART, SPI or I2C interfaces are available.

In order to make the ultimate IO interface for users, the team are accepting feature requests at the contact page.

In short, the Iolinker board is easy to use and can reconfigure schematics on the fly, what makes it ideal to reduce prototyping time and jumper cable mess, and to maximize the ability of using IO extensions.

More technical details about Iolinker and its price will be announced soon at the Kickstarter campaign at Feb 14. Some special offers are for everyone who register in the website’s newsletter, so register now and stay tuned!

 

XPlotter, The All-In-One Plotter, Engraver and Laser Cutter

XPlotter is an affordable and easy to use desktop plotter, Laser cutter and engraver. It is designed to create a new definition of plotter. By integrating the laser engraver and cutter into the mechanism, it becomes a versatile desktop tool for artists, craftsmen and makers to set their imagination free.

The all-in-one machine can simulate real effects of handmade drawing and writing, can cut out and laser engrave on different materials. In addition, it has the capability to pick and place objects perfectly!

This machine is now live on Kickstarter, check out the video campaign to see XPlotter in action:

 

The writing of XPlotter is outstandingly similar to the real hand writing thanks to the angle of writing and the programmed process. Now you can do your paperwork or write your homework as neat as possible. Also you have the option to choose from a variety of fonts and pens! Drawing outputs also look so real because of demonstrating shadows and tiny tiny details.

A wide range of materials like paper, leather, fabric, cloth, and cardboard are able to be engraved by the laser engraver feature of XPlotter. Short time is needed to engrave your artworks due to the powerful laser equipped with the machine. Safety goggles are included too for making sure that users cope with laser safely.

This personal robot that is dedicated to write, draw and engrave for you has no limits. XPlotter team made a built-in vacuum pump system to enable XPlotter to pick and place at a high speed and features a precision within 0.012mm. It only takes you a few minutes to change the end effector into a vacuum suction cup, which is powerful enough to grab spherical items.

Amazingly, the team behind XPlotter has open-sourced the operation interface to welcome more applications made by users through the secondary development.

In short, these are the specifications of this amazing tool!

Check out this comparison between XPlotter and its alternatives.

The retail price will be around $500 but now you have the chance to get the basic XPlotter via the crowdfunding campaign for only $349. The full kit including engraving and pick and place is priced $529, where the final retail after Kickstarter will be $629. This campaign still has 52 days to go, you can check the campaign page now and choose your reward.

More videos of XPlotter in action can be found at this Youtube profile and the official website.

Virtualette V1, A Tiny Powerful Microcomputer

Designed by SRKH Designs, Virtualette V1 is a small dual stack microcomputer that can run Android and Linux operating systems, for network-wide IoT and mobile edge computing solutions and electronics DIY projects.

Virtualette V1 is designed based on the dual-core Cortex-A7 Allwinner A20 SoC, with 1GB DDR3L base memory, 8GB onboard NAND flash, and a 32GB microSD card. It also includes a real time clock, onboard battery and wakeup function, and 80 IO pins.

The microcomputer is consist of dual connected PCBs with 7.6cm x 3.7cm x 1.8cm size including mounting feet. It has an Ethernet jack, a USB port to connect mouse or keyboard, microSD card slot, SATA port, and mini USB ports.

Virtualette V1 is a low energy device with a typical 2.4W of energy draw with three power options; 9-48V PoE (Powered over Ethernet), 5V USB OTG, and a lithium battery.

You can run any of linux-based operating system on the V1, in addition to the optimized linux distribution that will be shipped with it. Users can change the OS by swapping over the micro SD card and they have the option of booting from an external microSD card or from the onboard NAND 8GB flash.

Additional storage can be added by inserting a USB2 drive or external hard drive (SATA compatible). V1 can be optionally booted by USB or a dedicated SPI ROM port.

Virtualette V1 Playing DVD via SATA

Examples of V1’s potential capabilities are:

  • As an individual desktop device or controller for a drone or robot.
  • As a liquid-cooled computer inside a 40mm PVC pipe.
  • As M2M nodes in a distributed intelligent security system.
  • Deployed as a peer-to-peer, machine-to-machine network in applications such as display information systems in airports or train stations.

With the launch of their Kickstarter campaign, SRKH Designs aims to raise funding of US$22.5k, offering backers Virtualette V1 devices from the first production run as their reward.

Post campaign, a roadmap of hardware products for the Virtualette range is planned. This includes future quad-core and octa-core versions, an add-on FPGA-based development board, a desktop platform, popular video adaptor interfaces and an ‘All in One’ peripheral board designed to embed V1 inside a slimline display case.

Open Source DIY Laptop Kit By Olimex

Olimex Ltd is a Bulgarian leading provider for development tools and programmers for embedded market. The company has 25+ years’ experience in designing, prototyping and manufacturing printed circuit boards, sub-assemblies, and complete electronic products.

The latest amazing product by Olimex is an open source laptop DIY kit called: TERES I.
TERES I is open source hardware and software Do It Yourself laptop running Linux on 64- bit ARM processor. It’s very light less 1 kg and convenient to carry with when travel. The core of this laptop is built around an Allwinner ARM Cortex-A53, 1GB of DDR3L RAM, 4GB of eMMC Flash, WiFi, Bluetooth, a camera, and an 11.6″ 1366×768 display.

Back to history, Teres I was the first king of the Odrysian state of Thrace where Plovdiv – the city where TERES I laptop was designed. The Odrysian state was the first Thracian kingdom that acquired power in the region, by the unification of more than 40 Thracian tribes under a single ruler!

The stylish and elegant shape laptop is open source hardware and software, so people can learn and study how it’s done. The CAD files and source code is on GitHub and everybody can download and modify and use for their own need.

“If you want to implement new features nothing stops you. If you need another processor, more power, more memory, better LCD, you are free to do this and tailor this laptop to your needs! If you do not like the Linux distribution you have access to the sources and can generate any Linux distribution to your taste!”

The laptop is modular which means that there is number of possibilities to expand it for example by adding a FPGA expansion module in order to give the laptop some extra capabilities like Digital Storage Oscilloscope, Logic Analyzer and much more features. This expansion module and others are under construction now and will be launched soon.

You can also order any spare part of the laptop since all it’s components available for purchase, which makes maintenance easier and cheaper.

TERES I DIY kit is available for €225 in two colors white and black, and it contains the following parts:

 

  1. PCB1 A64
  2. PCB2 IO
  3. PCB3 TOUCH
  4. PCB4 BTN
  5. PCB5 KEYBOARD
  6. LiPo 7000mAh
  7. Bottom
  8. Keyboard
  9. LCD Frame
  10. LCD Back
  11. Power Button
  12. Touch Buttons
  13. Speaker Left
  14. Speaker Right
  15. LED pipe
  16. Screws Set
  17. Hinge Set
  18. Mats Set
  19. Magnet
  20. Camera
  21. Camera Lens
  22. Dust Protectors
  23. Touch Cover
  24. Touch
  25. WiFi Antenna
  26. LCD cable
  27. FPC IO Main
  28. FPC Power Main
  29. FPC Touch Button
  30. FPC Kbd Button
  31. Power Adapter
  32. Microphone

 

This laptop could be the next educational gadget for your kids or students. You can use it to explain for them in action how computers work and what do they consist of. It will give them the chance to think deeper in the fields of electronics and programming while assembling the laptop for the  first time and if any trouble occurred  and they have to help in solving it. This educational benefits of TERES I could not be available unless the laptop is completely open source.

It is true that the specifications of this laptop may not be perfect, but no one can deny that the price tag is cool making this laptop a consumable choice for some usages. This DIY kit is out of stock now as mentioned on the website, but you can register your email on the product page to be notified once it is available.

TERES I is completely designed with KiCAD FOSS, also hardware and software source files are available on Github. Also check this file to know more details about the laptop and the building instructions.

A few months ago, Tsvetan Usunov the brain behind Olimex had conducted a talk at Hackaday Belgrade conference about his upcoming DIY laptop kit. Check it out!

Puck.js - A JavaScript powered button

Puck.js – The Ground-Breaking Bluetooth Low Energy Beacon

Puck.js is a low energy smart device which can be programmed and debugged wirelessly with JavaScript. It is both multi-functional and easy to use.  This beacon uses a custom circuit board with the latest Nordic chip, Bluetooth LE, Infrared transmitter, NFC, magnetometer, temperature sensor, RGB LEDs, and much more. Unlike other beacons, Puck.js comes with the open source JavaScript interpreter Espruino pre-installed, which makes it incredibly easy to use. Anyone without any prior programming experience can get started in seconds.

Puck.js Has a Very Small Form Factor
Puck.js Has a Very Small Form Factor

Specifications:

  • Espruino JavaScript interpreter pre-installed
  • nRF52832 SoC – Cortex M4, 64kB RAM, 512kB Flash
  • 8 × 0.1″ GPIO (capable of PWM, SPI, I2C, UART, Analog Input)
  • 9 × SMD GPIO (capable of PWM, SPI, I2C, UART)
  • Compatible with Bluetooth 5.0 – giving Quadruple the range, and double the speed of Bluetooth 4.2
  • Built-in Near Field Communications (NFC)
  • 12 bit ADC, timers, SPI, I2C, and Serial
  • MAG3110 Magnetometer
  • IR Transmitter
  • Red, Green and Blue LEDs
  • Pin capable of capacitive sensing
  • Built-in temperature sensor, light sensor, and battery level sensor
  • ABS plastic rear case and silicone cover with tactile button
  • CR2032 210mAh battery

Features:

Puck.js has various sensors for different purposes and various kinds of output components. It can measure light, temperature, magnetic fields, and capacitance. This beacon also can control Infrared remote devices, produce any color light using RGB LED, and has a tactile switch that turns the Puck into one big button.

The Magnetometer on Puck.js is a digital compass. You can measure its orientation about the earth’s magnetic field in 3 dimensions. It can also detect a magnet nearby and measures the magnetic field.

Detailed View of Puck.js Bluetooth Beacon
Detailed View of Puck.js Bluetooth Beacon

Puck also has the Web Bluetooth feature that enables controlling it from a web page wirelessly. The website simply sends the JavaScript code directly to the Puck, and it’ll be executed. Another excellent feature of Puck.js is internet accessibility. Espruino contains TCP/IP and HTTP client and servers (including WebSockets). With a suitable Bluetooth LE to the Internet Gateway, you’ll be able to put your Puck on the web!

The story doesn’t end here. Compared to other smart beacons, Puck.js has much more features that make it unbeatable. Open Source hardware and software is one of them. Go here to get a complete list of all features.

Conclusion:

Puck is an outstanding product. It has tons of booming features in a small package, yet easy to program. Anyone can get started with this amazing device within seconds. You can get it at £28 from this Kickstarter link. Also watch this video from Kickstarter campaign or the below video by Adafruit.com for a better understanding.