Sensor category

MicroSemi’s Precision Colour Sensor AS73211

Precision colour sensing made easy

Austrian MicroSemi recently divested itself of its transceiver portfolio, leaving standards such as AS-I stranded. Sensors were selected as the new main field of business, leading to the introduction of a few extremely interesting products such as the JENCOLOR colour sensor ICs.

In principle, the sensor is laid out according to the schemes shown in the two figures accompanying the screen. The main priority is that the part contains but three photo-diodes, all three of which are conveniently located behind a filter to eliminate unwanted spectral components.

The three diodes are located in seperate areas of the main die…

…AMS provides a relatively complex set of signal conditioning circuits

To clarify a few aspects: first of all, the AS73211 is strictly an one-pixel color detector – it has nothing to do with the traditional linear or two-dimensional CCD chips which are well-known from digital cameras. Secondarily, the chip’s intended usage is processes – think about quality control, sorting of goods and similar tasks where accurate color sampling is required.

Finally, the AS73211 is intended to reach extreme high accuracies – its internal DACs can work at 24bit if required.

When compared to a homebrew solution, benefits pop up. ADC linearity and temperature issues are handled by AMS – the chip contains various bits of logic which ensure that issues affecting resolution adversely are handled effectively.

[…continue reading]

Introduction to the silicon photomultiplier (SiPM)

App note from ON Semiconductors about SiPM sensors, explaining the working principle and primary performance parameters.

The Silicon Photomultiplier (SiPM) is a sensor that addresses the challenge of sensing, timing and quantifying low-light signals down to the single-photon level. Traditionally the province of the Photomultiplier Tube (PMT), the Silicon Photomultiplier now offers a highly attractive alternative that combines the low-light detection capabilities of the PMT while offering all the benefits of a solid-state sensor. The SiPM features low-voltage operation, insensitivity to magnetic fields, mechanical robustness and excellent uniformity of response. Due to these traits, the SensL® SiPM has rapidly gained a proven performance in the fields of medical imaging, hazard and threat detection, biophotonics, high energy physics and LiDAR.

Introduction to the silicon photomultiplier (SiPM) – [Link]

Fully-integrated smoke detector reduces false alarms

With the introduction of the ADPD188BI, Analog Devices (ADI) kills two birds with one stone: First, this smoke detector meets the latest international regulatory standards. Second, the device that integrates two LEDs, photodiode, and analog front-end (AFE) in a single package, help reduce false alarms often caused by steam and dust.

The ADPD188BI is engineered to meet new UL217 requirements as well as EN54/14604 specifications. Its integrated design uses two colors to separate particle sizes, increasing the ability to detect and classify smoke types and reject nuisance sources.  The ADI solution enables a back-scattering design with closer proximity of the LED to the photodiode, reducing circuit board size and allowing for smaller smoke detectors that are more architecturally compatible for residential and commercial use.

[source: eenewsembedded.com]

Humidity Sensor for Battery-Driven Applications

Sensirion, the expert in environmental sensing, presents the new ultra-low power humidity sensor SHTC3 for mobile and battery-driven applications. The SHTC3 is a digital humidity and temperature sensor optimized for battery-driven applications and high-volume consumer electronics. The sensor has been designed to overcome conventional limits in size and power consumption in order to fulfill current and future requirements, and offers an unmatched performance-price ratio. The SHTC3 improves the performance and flexibility of the SHTC1, while maintaining its proven reliability.

Sensirion’s CMOSens® Technology offers a complete sensor system on a single chip, consisting of a capacitive humidity sensor, a bandgap temperature sensor, analog and digital signal processing, A/D converter, calibration data memory, and a digital communication interface supporting I2C fast mode. The small 2 x 2 x 0.75 mm3 DFN package enables applications in even the most limited space. The sensor covers a humidity measurement range of 0 to 100% RH and a temperature measurement range of -40°C to 125°C with a typical accuracy of ±2% RH and ±0.2°C. The broad supply voltage of 1.62 V to 3.6 V and an energy budget below 1 μJ per measurement make the SHTC3 perfectly suited to mobile or wireless applications powered by battery.

With the industry-proven quality and reliability of Sensirion’s humidity and temperature sensors providing constant accuracy over a large measurement range, the SHTC3 offers the best performance-price ratio. Tape and reel packaging combined with suitability for standard SMD assembly processes make the SHTC3 ideal for high-volume applications.

Rutronik UK offers first integrated MEMS gas sensor from Bosch Sensortec

Integrated environmental sensors from Bosch Sensortec, the BME680, for wearables and mobile use, is available from Rutronik UK.

The Bosch Sensortec BME680 expands Rutronik UK’s portfolio to include the first integrated MEMS sensor measuring individually, highly linear, and precise, gas, air pressure, humidity, and temperature. The BME680 is an integrated environmental sensor specifically developed for wearables and mobile applications. It features a space-saving design and low power consumption.

The BME680 detects a number of different gases, including volatile organic compounds in paints containing formaldehyde, varnishes, paint strippers, cleaning agents, furniture, office equipment, adhesives, and alcohol. With accuracy of ±0.12 hPa and a TCO of 1.5Pa/K, the sensor features a precise barometer, says Rutronik UK and high-resolution and low-noise sensors for measuring humidity and temperature, making the BME680 suitable for home automation, indoor navigation, personalised weather stations, or sport and fitness tools.

The BME680 supports the I²C and SPI buses (three- or four-wire), is compatible with a wide range of VDD and VDDIO supply voltages, and can work in standard, forced, and sleep mode. It is supplied calibrated and an air pressure calculation can also be carried out at a later stage using the ACP 2.0 software from Bosch Sensortec.

The sensor is housed in LGA package measuring 3.0 x 3.0 x 0.95mm³. The design supports electromagnetic compatibility (EMC), longevity, and optimal power consumption in various operating modes, adds Rutronik.

To make the set-up process as simple as possible, standard settings for common applications such as weather monitoring, staircase/elevator detection, indoor navigation, and drop detection are already available. The data rate, noise, response time, and power consumption can also be individually adjusted.

The Bosch Sensortec BME680 is available on Rutronik’s e-commerce platform Rutronik24.com (where orders can also be placed directly).Rutronik UK operates as an independent company of the parent company, Rutronik Elektronische Bauelemente GmbH. It has a team of highly-qualified UK employees with broad experience of the electronics industry.

Rutronik Elektronische Bauelemente GmbH is one of the leading broadline distributors for semiconductors, passive and electromechanical components in addition to storage technologies, displays and boards and wireless products. The company primarily targets automotive, medical, industrial, home appliance, energy and lighting markets.

http://www.rutronik.com

ADXL356/357 MEMS accelerometers feature low noise, low power solution for Wireless Condition Monitoring nodes via @OEMsecrets @arrowglobal

These accelerometers are built to be intrinsically stable over time and temperature with no calibration required.

ADXL356/357 Accelerometers 

The ADXL356/357 MEMS accelerometers feature low noise, low power and offer an excellent solution for Wireless Condition Monitoring nodes.

ADXL372/375 Accelerometer

Ultralow power, 3-axis, ±200g MEMS accelerometer features deep, multimode output FIFO, several activity modes and comes in a small, thin package.

Get your parts sooner with free 1-day shipping when you spend $50 or more with Arrow.com

RK Clean Air – A Gas, Smoke, and Carbon Monoxide Detector

Rk Clean Air is a gas responded device that is capable of monitoring gas leakage, smoke, and carbon monoxide leakage in the home. According to the National Fire Protection Association, “Three of every five home fire deaths resulted from fires in homes with no smoke alarms (38%) or no working smoke alarms (21%) and the death rate per 100 reported home fires was more than twice as high in homes that did not have any working smoke alarms compared to the rate in homes with working smoke alarms.” The importance of having smoke and gas detector cannot be overemphasized.

RK Clean Air

Carbon monoxide (CO) has been called the “silent and invisible killer” because it doesn’t has smell, color, or taste. It’s one of the most prevalent causes of death due to poisoning. Smoke and CO detector are readily available and quite common, Nest Protect, one of the most popular household detectors can detect smoke and carbon monoxide in the home. RK Clean Air is offering more than just smoke and carbon monoxide protection by adding extra security of monitoring gas leakage and fan control.

The capability of combined smoke, carbon monoxide, natural gas, and propane detectors seems intuitive but has not been encountered. A detector coupled to an exhaust system to extract and dissipate dangerous flammable gasses as well as carbon monoxide could prevent many deaths and provide a warning to building occupants. For example, the first notice that many people have of a propane or natural gas leak occurs when smelled in another area of a home only after explosive concentration of gas are reached in other isolated home areas. RK Clean air is able to combine all these together to create a powerful detector.

Furnished with powerful sensors, RK Clean Air continually monitors gas, smoke and CO levels in your home, giving its users a peace of mind. Just like Nest and most detectors, RK Clean Air is able to send a notification to a smartphone. When the RK Clean Air detects danger, it alerts you on your smartphone, while simultaneously flashing its light, sounding an alarm and turning on RK Extractor system that is used in clearing out any harmful gas.

RK Clean Air is also equipped with a clock that will always display the time in idle mode. The clock can be set using the Apaxon Home Automation App that is developed for the RK Clean Air detector.

The following are some of the significant features of RK Clean Air:

  • Detect Gas, Smoke and Carbon Monoxide
  • Smartphone Alerts and Control (Apaxon Smart App)
  • Clock Function (clock can be set on the app)
  • Fan Control (RK Extractor Fan can be switch off using the App)
  • WiFi
  • RF connectivity (used in the communication with the RK Extractor Fan)
  • Comes in three colors – White, Blue and Black
  • Easy to Install

 RK Clean Air is developed by Apaxon Ltd Team, a new Startup company based in Manchester, UK. Apaxon is launching a Kickstarter campaign for its RK Clean Air detector very soon.

Broadcom AFBR-S50 ToF laser light sensor measures up to 10 meters

The AFBR – S50 is a multipixel distance and motion measurement sensor. It has an integrated 850nm vertical cavity surface emitting laser (VCSEL) which uses a single voltage supply of 5V. It’s measurement rates are quick and as fast as 3 kHz, which is a distinguishing feature. However, this is not the reason why the AFBR – S50 stands out. It is different because unlike other Time of Flight (ToF) ranging sensors, the AFBR – S50 can measure up to 10 meters whereas similar sensors don’t get close to that.

The AFBR-S50

Furthermore, the sensor works on the principle of Optical Time of FlightTime-of-Flight principle (ToF) is a method for measuring the distance between a sensor and an object, based on the time difference between the emission of a signal and its return to the sensor, after being reflected by an object. If you have used the popular HC-SR05 Ultrasonic sensor, then you have seen this principle in action. The AFBR – S50 can be used both inside and outside to cover wide ranges of ambient light. It supports almost 3000 frames every second with an accuracy of less than one percent on diverse types of surfaces.

ToF Principle

The multi-pixel sensor works with up to 16 illuminated pixels out of 32 and with its best-in-class ambient light suppression of up to 200kLx, to ensure smooth usage outside. It uses SPI Interface to communicate with a host device. AFBR – S50 not only works outside but it is also equally effective on colored, white, black and metallic reflection objects.

Broadcom has released two different versions of the sensor:

  • AFBR-S50MV680B
    • 680nm laser light source.
    • One illuminated pixel
    • FOV (Field Of View) 1.55° x 1.55°
    • Single voltage – 5V supply
  • AFBR-S50MV85G
    • 850nm laser light source
    • 9-16 illuminated pixels
    • FOV 6.2° x 6.2°
    • Single voltage – 5V supply

Below are the General Specifications for the Multipixel sensor:

  • Integrated 850nm laser light source.
  • Between 9-16 illuminated pixels.
  • FOV 6.2°x 6.2° (1.55 x 1.55°/pixel).
  • High-speed measurement rates of up to 3 kHz.
  • Variable distance range up to 10m.
  • Operation up to 200k Lux ambient light.
  • Works well on all surface conditions.
  • SPI digital interface (up to 20 MHz).
  • Single voltage supply 5V.
  • Integrated clock source.
  • Laser Class 1.
  • Accuracy < 1 percent.
  • Drop-in compatible with the AFBR-S50 sensor platform

Applications for the ToF sensor can be found in areas of industrial sensing, gesture sensing, distance measurement, robotics, drones, automation, and control. The AFBR-S50 is available, but the price is currently undisclosed. You can contact Broadcom sales for more information. More details can be found on the product page, and the AFBR-S50 datasheet can be found here.

SGPC3 – Air Quality Sensor for Battery-Driven Applications

Sensirion, the expert in environmental sensing, now offers the ultra-lower power gas sensor SGPC3. The SGPC3 makes indoor air quality sensing available for mobile and battery-driven applications. With an average supply current of less than 0.07 mA the SGPC3 is able to provide indoor air quality measurements with several years of battery lifetime. Based on Sensirion’s SGP multi-pixel platform the SGPC3 offers a complete gas sensor system integrated into a very small 2.45 x 2.45 x 0.9 mm3 DFN package featuring I2C interface and a fully calibrated and humidity-compensated air quality output signal

Sensirion’s MOXSens® Technology provides the SGPC3 with an unmatched robustness against contamination by siloxanes resulting in outstanding long-term stability and accuracy. The combination of ultra-low power consumption and long-term stability makes the SGPC3 the perfect choice for indoor air quality monitoring in mobile and battery-driven smart home applications. Evaluation and testing is supported by application notes and example code; the SGP evaluation kits are also available through Sensirion’s distribution network.

Visit Sensirion’s website to see where you can order the SGPC3 gas sensor or to learn more about its specifications and features: www.sensirion.com

Discover more about the most relevant environmental parameters and Sensirion’s other innovative environmental sensor solutions at www.sensirion.com/environmental-sensing

Triaxis magnetic position sensor IC is ASIL-ready

Melexis’ next-generation monolithic magnetic sensor family, consisting of the MLX90371 and MLX90372, provides robust absolute position sensing for various applications. By Julien Happich @ eenewseurope.com:

Both devices consist of a Triaxis Hall magnetic front end, an analog to digital signal conditioner, a DSP for advanced signal processing and an output stage driver. Due to the Integrated Magneto Concentrator (IMC) they are sensitive to magnetic flux in three planes (X, Y & Z). This facilitates the decoding of the absolute rotary or linear position of any moving magnet, enabling the design of non-contact position sensors. The MLX90371 offers analog or PWM output while the MLX90372 offers SENT (SAE J2716 rev Apr 2016) or PWM output.

Triaxis magnetic position sensor IC is ASIL-ready – [Link]