Test/Measurements category

MappyDot – Micro Smart LiDAR Sensor

Blecky @ hackaday.io:

MappyDot is a smart ranging sensor which provides system designers with the ability to measure accurate distances on drones and robotic platforms for collision avoidance, area mapping, distance measurement, gesture recognition and motion sensing. The MappyDot uses the VL53L0X laser time-of-flight ranging sensor from STMicroelectronics, which is a tried and tested 940nm Class 1 laser sensor in use in millions of devices worldwide.

MappyDot – Micro Smart LiDAR Sensor – [Link]

Design and Implementation of a 12 Lead Portable ECG

Alex Lao and his team at McMaster University have developed a compact, battery powered, 12-lead electro-cardiogram:

During the academic year of 2016-2017 at McMaster University, in conjunction with Dr. DeBruin, Christina Riczu, Thomas Phan and Emilie Corcoran, we developed a compact, battery powered, 12-lead electro-cardiogram. The project won 1st place in the biomedical category at the ECE Capstone Poster Day.

Design and Implementation of a 12 Lead Portable ECG – [Link]

Haasoscope – Cheap, flexible, data acquisition for all!

Haasoscope is the first open-source, open-hardware, flexible, small, cheap, oscilloscope and data-acquisition board. You can use the stock firmware for basic oscilloscope functionality, or modify the firmware to customize what the Haasoscope does.

Preliminary features and specifications:

  • 4 x 100 MHz, 8-bit ADC channels with BNC cable inputs
  • Altera Max10 FPGA with 8k logic elements and 387kb of memory
  • Reprogram firmware over JTAG, or on the fly, with free Quartus II software
  • Readout over serial-to-USB at 1.5 Mb/s, about 20 Hz for 4 channels of 512 samples each
  • USB powered, (or other 5 V input, switchable), ~1.2 Watt
  • 8 x spare digital I/O
  • 9 x additional analog I/O with 1 MHz (1MSPS combined) at 12 bits
  • 7 x programmable LEDs, and a reset button

Haasoscope – Cheap, flexible, data acquisition for all! – [Link]

App note: Implementation of a single-phase electronic watt-hour meter using the MSP430AFE2xx

Another energy meter from Texas Instruments using MSP430AFE2xx. (PDF)

This application report describes the implementation of a single-phase electronic electricity meter using the Texas Instruments MSP430AFE2xx metering processors. It includes the necessary information with regard to metrology software and hardware procedures for this single chip implementation.

App note: Implementation of a single-phase electronic watt-hour meter using the MSP430AFE2xx – [Link]

SMA Solar readout

Jean-Claude wanted to read SMA solar inverter data over Bluetooth and so he build this project.

This is the first post of a 3-part series about reading out an SMA solar inverter over Bluetooth and displaying some readings every few seconds. Long-time readers may remember the Solar at last weblog post from several years ago and the SMA Relay, based on a JeeNode v6. The Bluetooth readout code was derived from Stuart Pittaway’s Nanode SMA PV Monitor code.

SMA Solar readout – [Link]

Open Radiation Detector

Quickly identify radioactive materials with a pocket-sized ion chamber. Built from standard parts for easy manufacture and low cost. by Carlos Garcia Saura:

Nuclear radiation is invisible and can be harmful to life. The goal of this project is to provide a simple device that could prevent cases of radiation poisoning. Professional radiation meters can be very accurate, but are also expensive, complex and fragile (most use vacuum discharge tubes made of glass). However in many occasions we only want to determine whether an object is radioactive or not.

Open Radiation Detector – [Link]

Dual Channel Inductive Loop Vehicle Detector

Muris @ elektronika.ba tipped us with his latest project. It’s a revision of their single channel loop detector published some time ago and it come with some nice features.

There are two PCB versions available, one is a standalone version (PCB v1.2) with DIPs and relays on board and another one is a digital version (PCB v1.3) without DIPs and relays where it requires PC or another microcontroller system to be connected in order to configure the operating parameters. Here we will be focusing on the standalone version.

Dual Channel Inductive Loop Vehicle Detector – [Link]

PAC1934 – Microchip’s New Power-Monitoring IC Measures Power With 99% Accuracy

Microchip recently developed a precision power-and-energy-monitoring chip – PAC1934. The PAC1934 is a four channel power/energy monitor with current sensor amplifier and bus voltage monitors that feed high-resolution ADC. It works in conjunction with a Microchip software driver that is fully compatible with the Energy Estimation Engine (E3) built into the Windows 10 operating system. The whole setup provides 99 percent accuracy on all battery-powered Windows 10 devices.

PAC1934 - Software power monitoring IC
PAC1934 – Software power monitoring IC

The PAC1934 enables energy monitoring with a wide range of integration periods from 1 ms to up to 36 hours. Combining Microchip’s PAC1934 chip and Microsoft’s E3 service can enhance the measurement of battery usage by different applications up to 29 percent. The sophisticated digital circuitry of the IC performs power calculations and energy accumulation precisely.

The PAC1934 is able to measure voltage accurately as low as 0V and as high as 32V. This ability lets the chip precisely measure power usage from the Central Processing Unit (CPU) as well as from software running on devices connected through a USB Type-C connector. The chip has features that could make it an essential part of future software upgrades. No input filters are required for this chip as it uses real-time calibration to suppress offset and gain errors.

The PAC1934 measures bus voltage, sense resistor voltage, and accumulated proportional power. Then stores the data in 16-bit registers for retrieval by the system master or embedded controller. The data transfer between the chip and the host system is performed over SMBus or I2C. The sampling rate and energy integration period can also be controlled similarly. Another important feature is its highly configurable controls, such as Active channel selection and one-shot measurements.

Most important features are:

  • 100 mV full-scale voltage sense range, 16-bit resolution.
  • Bidirectional or unidirectional options.
  • Wide bus voltage measurement range 0V to 32V, 16-Bit Resolution.
  • 1% power measurement accuracy.
  • 48-bit power accumulator register for recording data.
  • 24-bit accumulator count.
  • User programmable sampling rates of 8, 64, 256, 1024 samples per second.
  • 36 hours of power data accumulation at 8 samples per second.
  • 2.7V to 5.5V supply operation.
  • Separate I/O pin for digital I/O 1.62-5.5V.
  • I2C fast mode plus (1Mp/S) and SMBus 3.0.

For more information on this IC, visit Microchip’s website here.

IkaScope: a wireless oscilloscope probe

IkaScope is a wireless oscilloscope probe that allows to observe the change of electrical signals over time. The probe is a handheld device, portable and fits perfectly in the hand and pocket. By using high-speed Wi-Fi connection, IkaScope wireless oscilloscope probe communicates with laptop, tablet or smartphone to share the acquired data on the screen. The IkaScope wireless oscilloscope probe is compatible with the most popular mobile and desktop operating systems. The probe has a 200 MSPs ADC, Spartan 3 FPGA and adequate battery capacity (450 mAh). Energy saving settings and downtime moments manage the energy efficiency. The probe comes with a ground clip and a USB charging cable. Especially relevant is the patented ProbeClick technology of IkaScope: all electronic circuits are powered only when the the probe is pressed (figure 1). The probe tip is also used to start the data acquisition. ProbeClick technology allows to save power and measure without remembering to press the run / stop button of a classic oscilloscope.

wireless oscilloscope probe
Figure 1: IkaScope wireless oscilloscope probe

The probe technology and user interface

ProbeClick represents a simple innovative mechanism to manage the data acquisition by probe tip. Simply by pressing the probe, the device starts data capturing and streaming process on the screen using the wi-fi connection. In addition, by releasing the probe, the acquisition stops and automatically the data is available in the storage/cloud (figure 2). IkaScope application is the user interface to capture, measure and analyze analog signals. From the download page you can download the latest version of IkaScope for your prefered Desktop OS.

wireless oscilloscope probe
Figure 2: IkaScope during a testing process

 

IkaScope can be configured as a wireless hotspot. It will remember access points and will connect instantly without having to enter your login password. Moreover, IkaScope application has a share button at the top left of the screen. Just click on it to share a screenshot of the measurement.

General specifications

  • Model name: WS200.
  • Communication: WiFi 802.11 b/g/n/e/i 2.4GHz.
  • Connection: Access Point or Station.
  • Battery charging connector: Micro USB.
  • Input contact: ProbeClick.
  • Operating Temperature: 10°C to 35°C.
  • Altitude < 2000m.
  • Protection Input level: Sample test voltage: 253 VAC 1 min.
  • Input to charging port isolation: Saple test voltage: 1100 VAC 1 min.
  • Battery: Built in Lithium / 420mAh
  • Application compatibility: Windows / Mac / Linux / Android / iOS.

Measurement specifications

  • Max sample rate: 200MSps.
  • Analog Bandwidth(-3dB compression): 30MHz at -3dB.
  • Input Voltage: +/-40V range CAT1.
  • Galvanic isolation: Between Input and Charging port.
  • Coupling: AC (true) / DC.
  • Input Impedance: 1MOhm || 14pF.
  • Voltage resolution: 100mV/div up to 10V/div.
  • Max Trace refresh rate: 250 FPS.
  • Sample resolution: 8 bits.
  • Analog Offset range: +/-20V to +/-40V.
  • Memory depth: 4K Points (4 x 1000 points burst buffers).
  • Channel: 1
iEAT - A Portable allergen-detection system

iEAT – A Powerful Keychain Detector To Detect Food Allergens

For kids and adults with food allergies, having meals from restaurants or hotels can sometimes be very risky. Even when ultimate care is taken, freshly prepared meals can accidentally become cross-contaminated with an offending food and trigger an allergic reaction. Every year many people end up in the emergency room due to food allergies. Researchers of the Harvard Medical School developed an affordable device called iEAT for detecting allergens, which can reduce the anxiety of the people prone to allergies.

iEAT - A Portable allergen-detection system
iEAT – A Portable allergen-detection system

Conventional methods to detect the hidden allergens require massive laboratory equipment. They are slow and also do not work on a low concentration of allergens. Ralph Weissleder, Hakho Lee, and their colleagues at the Harvard Medical School wanted to make a more practical, consumer-friendly alternative. They reported in the journal ACS Nano the development of a new portable allergen-detection system that features a keychain analyzer for detecting allergens in food anywhere, anytime.

The portable allergen-detection system called integrated exogenous antigen testing or iEAT is small enough to fit in your pocket and it costs $40 only. The iEAT consists of a handheld device to extract allergens from food and an electronic keychain reader for sensing allergens. Then, the result is wirelessly sent to a smartphone. The prototype is able to detect five allergens within 10 minutes, one each from wheat, peanuts, hazelnuts, milk, and egg whites, even if they are in very low concentration.

The main device uses a disposable sample collector which is inserted into the small-sized main unit. The device is so sensitive that the scientists were able to detect gluten in foods advertised as being “gluten-free”. For example, the device detected gluten in salad and an egg protein in beer. Although the prototype was primarily designed to sense five allergens only, the researchers say the device could be expanded to test for many additional compounds, including other allergens and non-food contaminants such as pesticides.