Tag Archives: AC

3 Phase AC Motor Controller

This project made using MC3PHAC from NXP Semiconductor. The project generates 6 PWM signals for 3 Phase AC Motor controller. It’s very easy to make professional VFD combining with Intelligent Power Module (IPM) or 3 Phase IGBT/MOSFET with Gate driver. The board provides 6 PWM signals for the IPM or IGBT Inverter and also brake signal. Also this board works in stand-alone mode and doesn’t require any software programming/coding.

The MC3PHAC is a high-performance monolithic intelligent motor controller designed specifically to meet the requirements for low-cost, variable-speed, 3-phase ac motor control systems. The device is adaptable and configurable, based on its environment. It contains all of the active functions required to implement the control portion of an open loop, 3-phase ac motor drive. One of the unique aspects of this board is that although it is adaptable and configurable based on its environment, it does not require any software development. This makes the MC3PHAC a perfect fit for customer applications requiring ac motor control but with limited or no software resources available.

Included in the MC3PHAC are protective features consisting of dc bus voltage monitoring and a system fault input that will immediately disable the PWM module upon detection of a system fault.

3 Phase AC Motor Controller – [Link]

New current sensors have no magnetic circuits

Clemens Valens @ elektormagazine.com discuss about LEM’s new current sensors which do not use the Hall effect make the measurement. Instead they integrate conductors for gradient measurement and provide immunity against the external fields. He writes:

Here are some new integrated circuit transducers for AC and DC isolated current measurement up to 300 KHz that offer full isolation, despite their small size, by integrating the primary conductor for nominal current measurements of up to 30 A. The transducers are mounted directly onto a printed circuit board as SO8 or SO16 SMT devices and support overload currents up to 200 A peak for short durations (1 ms).

New current sensors have no magnetic circuits – [Link]

AC Motor Speed Controller for Modern Appliances Using LS7311

The project specifically designed for motor speed control application in appliances such as blenders, etc. Tact switches provided for selecting/indicating from 1 to 10 power levels ( Speed Levels).  The project is ideal for universal and shaded-pole motor speed control for modern appliances design. Eliminates awkward mechanical switch assemblies and multi-taped motor winding.

Features

  • 10 Tact Switch for Speed Selection
  • 10 LEDS for speed indication
  • On Board Stop and Start Switches ( Start Switch Latch Operation)
  • Momentary Run Switch
  • Supply 230V ( 110V Possible Refer Data sheet for components Change)
  • 300W Load
  • On Board snubber for Inductive Load
  • No Separate DC power supply required

AC Motor Speed Controller for Modern Appliances Using LS7311 – [Link]

How to connect a Solar Inverter in 10 minutes

Let’s connect a solar power inverter for AC voltage output in just 10 minutes.

How to connect a Solar Inverter in 10 minutes – [Link]

AC PWM dimmer for Arduino

FXN117QIMGLKAS4.MEDIUM

diy_bloke @ instructables.com has designed an AC PWM dimmer for Arduino:

Over 3 years ago, I published a simpel TRIAC AC dimmer for the arduino. That proved to be a very popular design. Yet in spite of the simplicity of the circuit the software needed was a bit complicated as it needed to keep track of the zero crossing of the AC signal, then keep track of the time and then finally open the TRIAC. So to avoid letting the arduino just wait for most of the time, an interrupt and a timer were necessary.

AC PWM dimmer for Arduino – [Link]

RELATED POSTS

Arduino controlled Triac light dimmer

F3QO7VAH8W1VGLR.MEDIUM

diy_bloke @ instructables.com has build an arduino controlled triac light dimmer and describes the circuit and software used to achieve that.

It becomes a bit more tricky if one wants to dim a mains AC lamp with an arduino: just limiting the current through e.g. a transistor is not really possible due to the large power the transistor then will need to dissipate, resulting in much heat and it is also not efficient from an energy use point of view.

Arduino controlled Triac light dimmer – [Link]

AC Motor Speed Controller using U2008B

AC-Motor-Speed-Controller-500x500

This low cost current feedback phase control AC motor driver based on U2008 IC, The U2008B is designed as a phase control circuit in bipolar technology. It enables load-current detection as well as mains-compensated phase control. Motor control with load-current feedback and overload protection are preferred application.

Specifications

  • Supply In-put: 230V AC
  • Load: Up to 500W (Triac Required Heat sink for Higher Load)
  • Jumper J1 Selection: A-Load Current Compensation or B-Soft Start
  • PR1: Preset for Phase Control ( Ramp Current Adjustment)
  • P1 : Potentiometer Set Point

AC Motor Speed Controller using U2008B – [Link]

Isolated Digital ON/OFF Switch for AC load

AC_Load_Switch_M011

ON/OFF AC load Controller project offers simple On/Off Switch Control with two tact switch.

Specifications

  • Input supply – 12 VDC @ 40 mA
  • Output – upto 500 W – 230 VAC
  • Onboard tactile switch for ON/OFF control
  • Opto-isolated Triac based design
  • Power-On LED indicator
  • Power Battery Terminal (PBT) and Terminal pins for easy input / output connection
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 44 mm x 86 mm

Isolated Digital ON/OFF Switch for AC load – [Link]

RELATED POSTS

AC Solid state Relay for Inductive Load

 

M015_W

AC Solid state Relay for Inductive Load offers simple On/Off type Switch Control with TTL compatible input signal.

  • Input signal : 2 ~ 5 VDC, TTL compatible
  • Output : up to 500 W
  • Mains supply input 230 VAC or 110 VAC
  • Optically isolated Triac based design
  • Power Battery Terminal (PBT) and Terminal pins for easy input / output connection
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 35 mm x 72 mm

AC Solid state Relay for Inductive Load – [Link]

RELATED POSTS

AC Solid State Relay

Solid_State_Relay_IMG2

This simple circuit designed around Solid State Relay S216S02 from SHARP. The S216S02 solid State Relay (SSR) is an integration of an infrared emitting diode (IRED), a Phototraic Detector and a main output Traic. These devices are ideally suited for controlling high voltage AC loads with solid state reliability while providing 4KV isolation from input to output.

A solid-state relay (SSR) is an electronic switching device that switches on or off when a small external voltage is applied across its control terminals. SSRs consist of a opto-isolator which responds to an appropriate input (control signal), a solid-state electronic switching device which switches power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts. This relay designed to switch either AC load up-to 1KW. It serves the same function as an electromechanical relay, but has no moving parts. Solid-state relays have fast switching speeds compared with electromechanical relays, and have no physical contacts to wear out.

AC Solid State Relay – [Link]