Tag Archives: API

obniz – API managed IO on the Cloud

Obniz is the world’s first development board which IO is available as API on the cloud. It’s Tiny but powerful, Internet connected board.

obniz has 12 IO and WiFi module and It can be controlled through the APIs on obniz cloud, either through the REST or WebSocket API. The API can be used in javascript, so obniz programs written in JavaScript can run on a webpage, so “Turning on a motor by pressing a button on the Web” is an easy task!

With obniz, it’s easy to make any hardware project you can think of! Just connect motors or sensors to an obniz then program it via the Internet. No App or firmware flashing is required. Program it from your PC or smartphone now!

obniz – API managed IO on the Cloud – [Link]

Build And Simulate Quantum Software Applications With Rigetti Forest 1.0

Rigetti Computing is a full-stack quantum computing company. They build hardware and software with fundamentally new integrated circuits that store and process quantum information.

Accordingly, this Silicon Valley company is providing solutions for existing problems that traditional computers can not solve. These problems include the ability to provide molecular simulation showing all interactions and to accurately predict next week’s weather.

An 8-qubit quantum processor built by Rigetti Computing. (PRNewsfoto/Rigetti Computing)

Thus, Rigetti is using quantum mechanics for computation. Adding one quantum bit (qubit) can double the performance. Below is a table mapping the computation power of qubits with classical memories.

Rigetti Computing recently unveiled its Fab-1 facility. A facility which will enable its engineers to rapidly build new generations of quantum computing hardware based on quantum bits, or qubits. In fact, the facility can spit out entirely new designs for 3D-integrated quantum circuits within about two weeks—much faster than the months usually required for academic research teams to design and build new quantum computing chips. It’s not so much a quantum computing chip factory as it is a rapid prototyping facility for experimental designs.

Software is also included

It has also announced its Forest 1.0 service that enables developers to begin writing quantum software applications and simulating them on a 30-qubit quantum virtual machine. Forest 1.0 is based on Quil—a custom instruction language for hybrid quantum/classical computing—and open-source python tools intended for building and running Quil programs.

“Developing quantum computing software is one of the most fascinating and challenging emerging fields of engineering. Today, that field is at the foundational stage, where learning and discovery are at a premium. Our full-stack strategy allows us to run faster, more tightly coupled iteration cycles between hardware, software, and applications.” – Chad Rigetti, Founder & CEO

More details about this API are available on Forest 1.0 official page and this blog. Also watch this workshop video by Rigetti:

SMART.IO, An Affordable Remote Control for Embedded Designs

Creating a smartphone application for your embedded products may be a high-cost process that consumes time and efforts. ImageCraft, a producer of high quality low cost embedded system tools, had developed “Smatr.IO” as a very cheap alternative solution that allows you to add a friendly user interface to any embedded project.

Smart.IO is a toolkit that helps you to create a compatible application with your product without the need of any experience in wireless technology or app development. It uses BLE (Bluetooth Low Energy) and it doesn’t require an Internet connection or data plan.

Smart.IO consists of three parts:

  • A Small Chip Module compatible with any microcontroller.
  • A Software API for creating Graphical User Interface (GUI) objects.
  • A Programmable Smartphone App that requires only a Bluetooth connection to use.

There is no need to write any wireless code, or write an app. All you need is to add the Smart.IO chip to your existing microcontroller-based design, then use the API to create GUI objects in your firmware.

The Smart.IO Chip Module

The Smart.IO chip module is only 25mmx14mm. It has a 10-pin headers which are easy to solder onto your PCB, or use in a prototype system. It interfaces with your host microcontroller using SPI pins, plus extra pins for interrupts for data notification. Smart.IO draws very little power, typically about 100mA, and much less during standby mode.

If you are an Arduino user, ImageCraft will provide an Arduino-compatible shield that comes with a Smart.IO chip module, so that Arduino users can start using it immediately.

The Smart.IO API

The API functions allow you to create GUI objects and to modify their values. A simple callback mechanism notifies your firmware of input changes. The API code will run in the Smart.IO chip firmware, and the host MCU only runs the API interface layer code, so it will not use the host MCU resources.

The Programmable Smart.IO App

The GUI elements incorporate solid, current user interface principles. The UI will look and work exactly the same way across all iOS devices, from the iPhone 5 to iPhone 7+, and all iPad devices, including the iPad Pro. An Android friendly UI is planned for Spring.

There is also a customized version of the app specific to your product and branding for an inexpensive one-time licensing fee including customized app logo and name and security key to ensure your product will only work with your app.

Smart.IO Security

Secret key encryption is used to ensure secure pairing of the device and customized app. As Smart.IO does not use the Internet, there is no risk of your device being used for DDOS or other types of attacks through the use of Smart.IO.

Through the Kickstarter campaign, Smart.IO reached about $9,500 and pre-ordering is still open here. ImageCraft will start work on the Android version of the programmable app and set up a forum for Smart.IO users. A use case example of Smart.IO is available on the official page.

Android Things, Google’s IoT Platform

Google had launched Android Things,  a new comprehensive IoT platform for building smart devices on top of Android APIs and Google’s own services. Android Things is now available as a developer preview.

Android Things was basically launched as an enhancement for Brillo, Android based OS used for embedded development in particular for low-power IoT devices, and it is based on its feedback and best practices. Google had announced Android Things as re-branding of Brillo to solve many issues like the security of IoT devices.

Platform Architecture

Both work in conjunction with Weave, an open, standardized communications protocol that supports various discovery, provisioning, and authentication functions. Weave enables device setup, phone-to-device-to-cloud communication, and user interaction from mobile devices and the web. The chief benefit is allowing a “standardized” way for consumers to set up devices. Belkin WeMo, LiFX, Honeywell, Wink, TP-Link and First Alert will adopt Weave to make their devices able to interact with some Google products like Google Assistant.

One of the great things about Brillo was the security issue with IoT applications solved by choosing to use secure boot and signed over-the-air updates and providing timely patches at the OS level. Partnered with hardware manufacturers to build new devices based on Intel Edison, NXP Pico and the Raspberry Pi 3, Google will build the needed infrastructure to run the OS updates and fix security issues respectively on these devices.

Android Things makes developing connected embedded devices easy by providing the same Android development tools, best-in-class Android framework, and Google APIs that make developers successful on mobile. For more details about Android Things you can check the documentation provided here, where you can find also the developer’s preview.

Dual Screen Netatmo Weather Station

Netatmo Weather Station is a module that measures your indoor comfort by providing vital information such as temperature, humidity, air quality, and CO2, alerting you when you need to air out your home to bring down its pollution levels.

fr8fd78ivcvqdh7-medium

One of the Netatmo limitations is that you need to use a smartphone to view the collected information by the station. To solve this, Barzok had developed an Arduino-based screen to display the weather data remotely, and published a full guide to build it in this instructable.

Barzok’s first attempt was a stand-alone device inside weather station using an Arduino UNO, a real time clock, a temperature and pressure sensor, and a 2.8” screen. It displays the time, pressure history over the past 6 days, and temperature as digits and as a gauge bar.

flxlafbivcvqchz-medium

The next experiment was connecting the Arduino UNO with Netatmo API through an Ethernet shield and displaying the data on the screen. The connection was the difficult part as the Arduino was not powerful enough to establish an HTTPS connection and receive valuable information from Netatmo servers.

The solution uses a PHP client on a web server, which connects with Netatmo servers, and then the Arduino retrieves the data using the standard HTTP.

f4bjzi3ivcvqcwg-medium-1

The final version of the station consists of an Arduino Mega, two 2.8” inches screens, and an ESP8266 Wifi module. There is no limit of the Arduino type and screen size, you can use your model with minor changes of the code. Barzok also made a custom circuit that transforms the 9V input voltage into a 5V to power the Arduino and 3.3V to power the ESP8266.

fdd0p87iva4yibz-medium

The diagram presents the process, the Netatmo module gathers the weather information and uploads them to the Netatmo servers. Then a PHP application runs on remote server and retrieves the information from the Netatmo servers and turns it into simple text data. Finally the Arduino receives the simple texts with the ESP8266 module and displays them on the two screens.

The two screens displays different information, the left one provides the real time data received from the Netatmo sensors about temperature, pressure, humidity, rain and CO2. The other screen shows the time and date, pressure history, and 3 days weather forecast.

f03ni4miva4yiem-medium

fyodjj4iva4yif3-medium

You can find more instructions to build this project with detailed description about the code, schematics, box design at the project page.

LED Weather Forecast using Raspberry Pi

FJFLPYYIN943NGB.MEDIUM

AughtNaughtZero @ instructables.com posted his latest project, a LED matrix visualizing data from a weather website such as temperature, pressure, humidity, wind speed etc.

This project utilizes a 6 x 16 matrix of RGB LEDs to visualize a weather forecast pulled from the Weather Underground API. A Raspberry Pi runs a python program designed to fetch weather forecast data from the API at regular intervals, parse the data into temperature, pressure, humidity, wind speed, chance of precipitation, and weather condition arrays, and then colorize and display that data across the LED matrix.

LED Weather Forecast using Raspberry Pi – [Link]