Tag Archives: Arduino

Arduino E-Paper Display Review ( Waveshare 1.54″)

Our friends at educ8s.tv uploaded a new video. It’s about Waveshare 1.54″ e-paper display:

Dear friends welcome to this Arduino E-Paper display tutorial. In this video, we are going use this small e-paper display with Arduino for the first time and talk about its advantages and disadvantages.

Arduino E-Paper Display Review ( Waveshare 1.54″) – [Link]

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110

Hi guys, continuing on our recent path of building really cool stuffs based on the Nokia 5110 LCD display, today we will be building a DIY Lux (or light) meter using the highly sensitive BH1750 light sensor.

In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. Luminous emittance is also known as luminous exitance.

Lux is a measurement of the overall intensity of light within an environment for any given area or distance from the source or lux is the amount of light in an environment perceived by the human eye. The Lux meter is thus, a device used to measure the light intensity within an environment and its exactly what we will be building during this tutorial.

DIY Light (Lux) Meter using BH1750 sensor, Arduino and Nokia 5110 – [Link]

Arduino Mega Chess on TFT display

Chess processor with GUI dedicated for Arduino Mega. by Sergey Urusov

After some my Arduino project remains unclaimed touchscreen, so I decided to realize my chidhood dream to create a chess program. After a couple of months it wins me, but it is not big deal because i do not have any chess rating, just amateur.

This project uses Arduino Mega 2560 because of lack of operative memory on Uno, 2.8 inch touchscreen, passive buzzer, and about 2000 lines of code.

Arduino Mega Chess on TFT diplay – [Link]

DAC Shield For Arduino Nano using MCP4725

This project features an easy to use Digital to Analog converter (DAC) shield for Arduino Nano. The project is built using MC4725 12Bit DAC IC over I2C communication. The shield directly seats on Arduino Nano and also can be used as stand-alone DAC converter that can be connected to other micro-controller board with help of 5 pin header connector. Output is 0-5V. PCB jumper J1 provided to select the address in case of using multiple modules on the same I2C .

Shield also provided with high current driver circuit, which converters voltage to current and can be used to drive Laser diode or LED. Maximum possible load 500mA.

DAC Shield For Arduino Nano using MCP4725 – [Link]

Arduino Milliohm Meter

danielrp @ instructables.com writes:

This is an accurate milliohm meter with a maximum resolution of 0.1mOhm. The design is very simple, the whole assembly can be built in a couple of hours once all the parts are gathered. It is based on a precision current sink and a high-resolution ADC controlled by an Arduino Nano V3. It uses a Kelvin connection with the resistor under test to exclude the resistance of test leads from the measurements. It can be very useful for measuring small resistors and the resistance of PCB traces, motor coils, inductance coils, transformer coils, or calculate the length of wires.

Arduino Milliohm Meter – [Link]

The Little Buddy Talker – Arduino Compatible Speech Chip Set

Small, versatile, fun, and inexpensive! Use the 254 word library to bring speech to your Arduino projects! Speak, Arduino, Speak!

About a year ago, I designed an Arduino shield that allowed for you to add voice to your electronic designs.  I’ve since been able to minimise that design into a much less inexpensive, and smaller unit.  This unit has a 254 word library that consists of colours, commands, months/days/time, numbers, directions, feelings, units of measurement, security words, math lingo, and general words; all of which are spoken by “Lucy” – A lovely female voice with an English accent! Meet “The Little Buddy Talker” Arduino compatible speech kit set!  It is Production Ready, and eager to land in your hands!

The project is live on kickstarter and has 29 days to go.

The ezPixel is an Upcoming FPGA based WS2812B Controller Board

FPGAs are field programmable gate arrays which basically means they are reconfigurable hardware chips. FPGAs have found applications in different industries and engineering fields from the defence, telecommunications to automotive and several others but little application in the maker’s world. Mostly, as a result of being largely difficult and high cost as compared to the likes of Arduino, but the introduction of the ezPixel and other similar FPGA boards is making this a possibility.

Prototype modules.

The ezPixel board, by Thomas Burke of MakerLogic, is a small size FPGA based circuit board that can be used to drive up to 32 strings of WS2812Bs, for up to 9,216 LEDs in total, a very first of its kind. These WS2812B programmable color LEDs have been a phenomenon in the maker’s world, being used in various Led Lights and creating of various Light Artworks. These popular LEDs comes in strings that can be cut to any length, and only require a single wire serial data connection to control all the lights in the string individually, and multiple strings can be stacked together to create large two-dimensional displays.

ezPixel description.

Most WS2812B controller boards can be used to control up to hundreds of these LEDs, but not thousands of them. The ezPixel board is a perfect fit for applications that use thousands of these LEDs. The ezPixel board is powered by the Intel MAX FPGA, a single chip small form factor programmable logic device with full-featured FPGA capabilities, and it’s designed to interface with other Micro-controllers or any SPI/UART host device. The ezPixel board serves as bridge between microcontrollers and long WS2812B strings. A user sets the length of each string using simple commands that are sent via the SPI or USB/UART communication link.

The following below are the features of the ezPixel:

  • WS2812B Smart Pixel Controller.
  • Up to 32 Strings can be controlled independently.
  • Up to 9216 LEDs can be controlled.
  • Communication:
    • USB/UART Interface.
    • SPI Interface.
  • Read/Write Pixel Memory.
  • FPGA – Intel MAX10M08 FPGA.
  • Dimension:
    • 1” x 3” (25mm x 76mm).
  • SPI Flash.

The ezPixel can run as a standalone display controller as a result of its serial flash memory chip, and this board is slated for a crowdfunding campaign in early 2018.

Easy LED Strip Lightning Made possible by ChromaTab

LED strips provide users with multi-color and flexible illumination which can be fit into tight spacing. Also, they are customizable, durable, and easy to install which is why LED strips have gained popularity in design and personal projects. However, installing them can result in a lot of wire, power transistors (to control the LEDs), a microcontroller, a voltage regulator, and a lot of soldering. When danjhamer, a user from Hackaday, faced this problem while doing a small project with his daughter he came up with ChromaTab.

ChromaTab is a small control board for WS2812B RGB LED strips that can be soldered directly into the end of the strip. The device has 14 digital pins, 6 analog pins, and Arduino compatibility which allows the users to update and upload new sketches using the Arduino IDE. The sketches are to be uploaded though a USB to serial converter and as the firmware is based on Adafruit Neopixel library, effects and animations can be easily created.

It has an input voltage of 5-7 v, a current of 90 mA, clock speed of 16 MHz, SRAM of 2 KB and flash memory of 32 KB. It’s based-on Arduino Pro mini and Atmega 328P microcontroller. It is 43 mm wide, 10 mm High and 4 mm deep this size makes it easy to fit in small places. The only soldering needed is the 3 castellated pads to solder directly into the LED strip making your project more simple, organized, and easier to program. The complete specifications can be found on its official Hackaday website.

The ChromaTab could be perfect for kids learning about electronics or designers who want to use LED strips but don´t know much about electronics. Its already on sale in this website for € 18,00. Soon there will be add-on boards on sale to provide extra functions such as USB to serial converter. The device is cheap and offers to facilitate an otherwise boring task, but some improvements could be made such as making it water resistant (for Waterproof LED strips) or making it adaptable to other LED strip references. ChromaTab opens the door to a lot of projects and possibilities which is why it needs to keep improving to adapt to user’s project needs.

Arduino Nokia 5110 Tutorial #2- Displaying Customized Graphics

In one of our previous tutorials we did an introduction on how to use the Nokia 5110 LCD  with the Arduino, the tutorial covered displaying texts with different fonts etc. For this tutorial, we are taking things a little bit further and will be working through the display of customized graphics on the Nokia 5110 LCD display. This tutorial will particularly be useful for those who want to display their brand logo or any other kind of image on the LCD asides ordinary texts.

Arduino Nokia 5110 Tutorial #2- Displaying Customized Graphics – [Link]

DS18B20 Sensor Based Thermometer with Nokia 5110 LCD display

Hi guys welcome to this tutorial. Today we will be building a simple temperature monitor using the DS18B20 sensor with a Nokia 5110 LCD Display and an Arduino mega.

The DS18B20 digital temperature sensor gives a 9-bit to 12-bit Celsius temperature readings and also has an alarm function with nonvolatile user-programmable upper and lower trigger points. The sensor communicates via the 1-Wire communication protocol and thus by definition requires only one data line (and ground) for communication with a central microprocessor. Among the special features of this sensor, is an operational mode in which it can derive power directly from the data line (“parasite power”), eliminating the need for an external power supply line.

DS18B20 Sensor Based Thermometer with Nokia 5110 LCD display – [Link]