Tag Archives: Arduino

Master Your Arduino Skills With Arduino Playground Book

Are you an experienced maker who are looking for more advanced Arduino skills to get?

Warren Andrews, an experienced engineer and journalist, wrote a new book that walks makers through building 10 outside-the-box projects, helping them advance their engineering and electronics know-how. With this book, makers will delve more deeply into hardware design, electronics, and programming.

The “Arduino Playground: Geeky Projects for the Curious Maker” book is published by the Geek book publisher, No Starch Press. Projects inside the book provide a way to build new things that vary between practical and fun.

Content of the book

The book has 11 chapters, the first one is a warm up, it contains a quick guide to get the Arduino ready, prepare the IDE and try some sketches, making DIY PCBs, and using SOICs. Each chapter of the other 10 chapters is a project chapter that starts with listing the required tools, components, and software, followed by detailed instructions of the build containing all sketches and board templates. There are also author’s design notes, which are sure to provide inspiration for your own inventions.

  • Chapter 0: Setting Up and Useful Skills
  • Chapter 1: The Reaction-Time Machine
    A reaction-time game that leverages the Arduino’s real-time capabilities
  • Chapter 2: An Automated Agitator for PCB Etching
    A tool for etching your own printed circuit boards
  • Chapter 3: The Regulated Power Supply
    A regulated, variable-voltage power supply
  • Chapter 4: A Watch Winder
    A kinetic wristwatch winder decked out with LEDs
  • Chapter 5: The Garage Sentry Parking Assistant
    A garage parking assistant that blinks when your vehicle is perfectly parked
  • Chapter 6: The Battery Saver
    A battery saver that prevents accidental discharge
  • Chapter 7: A Custom pH Meter
  • A practical and colorful pH meter
  • Chapter 8: Two Ballistic Chronographs
    A ballistic chronograph that can measure the muzzle velocity of BB, Airsoft, and pellet guns
  • Chapter 9: The Square-Wave Generator
    A square-wave generator
  • Chapter 10: The Chromatic Thermometer
    A thermometer that tells the temperature using a sequence of colored LEDs

Reviews

“Arduino Playground is not for the faint of heart. Unless the faint of heart person plans to build a pacemaker with Arduino!” —ScienceBlogs

“This is a book designed for Arduino enthusiasts who’ve mastered the basics, conquered the soldering iron, and programmed a robot or two. Warren Andrews shows you how to keep your hardware hands busy.” —I Programmer

The book is available for $30 on No Starch Press and Amazon. You can view the detailed table of contents and the index, and also you can download Chapter 4: A Watch Winder, and the sketches, templates, and PCB files used in this book.

MightyWatt: 70W Electronic Load for Arduino

Jakub designed and built a programmable electronic load for Arduino, the MightyWatt R3:

MightyWatt R3 is a programmable electronic load. That means you can use it for testing batteries, power supplies, fuel cells, solar cells and other sources of electrical power. You can also make a programmable power supply from a fixed-voltage power supply and MightyWatt R3 and use it for example as an intelligent battery charger.

MightyWatt: 70W Electronic Load for Arduino – [Link]

Using I2C SSD1306 OLED Display With Arduino

Sometimes it may be necessary to use a display when making a hardware project, but one confusing thing is the size of the display and the required pins to control it. This tutorial will show you how to use a small I2C OLED display with Arduino using only two wires.

The display used in this tutorial has a very small (2.7 x 2.8cm) OLED screen, that is similar to Arduino Pro Mini size, with 128 x 64 screen resolution. The OLED Driver IC is SSD1306, a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting diode dot-matrix graphic display system. The module has only 4 pins, two of them are the supply pins, while the others are SCL and SDA, I2C protocol pins, which will be used to control the display.

Using I2C SSD1306 OLED Display With Arduino – [Link]

Arduino RFID Keycard Access

Use the PN532 NFC available on the anduinoWiFi shield to create an RFID keycard building access system. by Brian Carbonette @ hackster.io

Arduino RFID Keycard Access – [Link]

How to Make Your Own ARDUINO UNO Board

Being Engineers @ instructables.com writes:

Hello guyz, Welcome to Being Engineers. Hope you all are doing good. In this tutorial we will learn how to make your own Arduino Uno. We will gather the components, test the circuit in breadboard, then we will make the board itself. When it is done we will know how to program the Arduino IC AKA Atmega328p on board.

How to Make Your Own ARDUINO UNO Board – [Link]

DIY Arduino Soldering Station

GreatScottLab @ instructables.com writes:

In this project I will show you how to create an Arduino based soldering station for a standard JBC soldering iron. During the build I will talk about thermocouples, AC power control and zero point detection. Let’s get started!

DIY Arduino Soldering Station – [Link]

Arduino MKRFOX1200

MKRFOX1200 is a powerful board that combines the functionality of the Zero and SigFox connectivity. It is the ideal solution for makers wanting to design IoT projects with minimal previous experience in networking having a low power device.

Arduino MKRFOX1200 has been designed to offer a practical and cost effective solution for makers seeking to add SigFox connectivity to their projects with minimal previous experience in networking.

Arduino MKRFOX1200 – [Link]

iCP12Q DAQduino, A Data Acquisition Board In Arduino Form

iCircuit Technologies had produced the iCP12A DAQduino, an Arduino-like development board for signals monitoring, data acquisition and circuit troubleshooting at 1mSec/Samples period.

The DAQduino board features a PIC18F2550 microcontroller with 14 digital I/O pins, two of them are PWM, and 6 input analog pins. With these IO ports, user can easily plug in different type of 3rd party boards with direct connection to USB port.

DAQduino has the same concept of the ICP12 usbStick with different shape and more I/O pins. Its PIC MCU is preloaded with Microchip’s USB HID bootloader that allows users to upload an application firmware directly through a PC’s USB port without any external programmer.

Features of iCP12A:
  • Arduino form connection, easy interfacing, high performance and user friendly device
  • Onboard with PIC18F2550 [Default] or PIC18F2553 28-Pin Flash USB PIC MCU
  • Excellent flexibility that allows user to expand the board features with plug and play modules
  • Peripheral Features:
    • 19x IO Port (6x 10/12bit ADC pins, 2x 10 bit PWM/Freq/DAC pins)
    • Serial port emulation (UART Baud Rates: 300 bps to 115.2 kbps)
    • Supported operating systems (32bit/64bit): Windows XP ,Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS X and Raspberry Pi
    • On board Female Mini USB and Micro USB Type B connector
    • Maximum Input Voltage: 15Vdc
    • With 500mA current output at VDD pin with over-current protection
    • 20MHz oscillator
    • Green LED – power on indicator
    • 2x LEDs (Green, Red) – status indicator
    • ICSP Connector – on-board PIC programming
    • Switch Mode Selection – Boot or Normal mode

DAQduino board is shipped with a preloaded data acquisition firmware that emulates as a virtual COM port to PC. Thereafter, the communication between the PC and DAQduino is serial and through a miniUSB cable. The firmware also supports basic I/O control and data logging feature. They provide a PC application named SmartDAQ that communicates with the DAQduino and controls its I/O pins, PWM outputs, and record ADC inputs.

iCP12A DAQduino Layour

SmartDAQ has a very friendly GUI with real-time waveform displays for 6 analog input channels. The time and voltage axes scales are adjustable. SmartDAQ can log the ADC data in both text and graphic form concurrently. One can utilize this feature to construct a low-cost data acquisition system for monitoring multiple analog sensor outputs such as temperature, accelerometer, gyroscope, magnetic field sensor, etc.

SmartDAQ v1.4 Features:
  • Sampling channel: 6x Analogs (10/12 bit ADC) + 7x Digitals (Input/Output)
    • PIC18F2550 [10bit ADC: 5mV Resolution]
    • PIC18F2553 [12bit ADC: 1mV Resolution]
  • Maximum Sampling rate: 1KHz or 1mSec/Samples
  • Sampling voltage: 0V – 5V (auto & scalable graph) at 1mV Res. Dispaly
  • Sampling period:
    • mSec: 1, 2, 5, 10, 20, 50, 100, 200, 500
    • Sec: 1, 2, 5, 10, 20, 30
    • Min: 1, 2, 5, 10, 20, 30, 60
  • Trigger Mode: Larger [>], Smaller [<], Positive edge [↑], Negative edge [↓]
  • Sampling Mode: Continuous, Single
  • VDD or External Vref Input Mode
  • Logging Function:
    • Save Format: Text, Graphic, Both
    • Start Time: Normal, Once Trigger, 24-Hour Clock (Auto Run)
    • End Time: Unlimited, Data Size, 24-Hour Clock (Auto Stop)
SMARTDAQ1.4 Window

The DAQduino is available with the PIC18F2550 for $30, and with the PIC18F2553 for $39.9. You can order it through the official page where you can also get more details about iCP12A and its source files.

You can also see this product preview to know more about its functionality.

How to Build a Bi-Fuel (LPG & Unleaded) Trip Computer Using Arduino

Nikos Stavrou @ instructables.com build a bi-fuel trip computer using arduino and has a detailed tutorial on it. The computer can measure both LPG and unleaded fuel consumption. He writes:

The main reason I made this project is the lack of a trip computer that is designed for LPG powered cars.

I named it Bi-TripCo as it can measure the fuel consumption for both fuel systems of a Bi-Fuel car (LPG and Unleaded).

Some might say: “ok, a similar one, no big deal!”. Don’t rush.There are many (or some) tools out there, that can calculate the consumption of conventional fuel systems, which are very easy to use: just plug it into the OBD port of your car – unless you have an older car which does not have one, like mine. And, of course, there are some very good implementations based on Arduino, which can calculate many things related to the Unleaded fuel consumption. But those tools can not be used on an LPG powered car.

How to Build a Bi-Fuel (LPG & Unleaded) Trip Computer Using Arduino – [Link]

Arduino Parking Assistant

addictedToArduino @ instructables.com designed a Arduino based parking assistant.

To appease my frustration I decided to design a device that would allow me to park in the exact spot every time. I love working with arduinos, leds, sensors, and nearly anything else electronic, so I knew from the start that it would probably end up as a contraption with an Arduino inside and a bunch of leds on the front!

Arduino Parking Assistant – [Link]

RELATED POSTS