Tag Archives: ATMega

Getting Started With the ATMega328P


Here is a detailed guide on how to get started with ATMega328P microcontroller. The guide goes in details on how to setup it on a breadboard and how to upload your first code on it. and blink a led.

The real benefit of using this microcontroller is that it’s only $4 US, whereas many other micro-controllers are 10X that price. It can also be easily programmed in the universal programming language, C++. The ATMega is also equipped with a decent amount of memory for any project.

Getting Started With the ATMega328P – [Link]

ATmega Alarm Clock & Thermometer Humidity meter


nitram147 @ instructables.com has build a ATmega based alarm clock with temperature and humidity reading. Sensor used is DHT11.

First, let me introduce you my project. I made an Alarm clock with extended functionality & thermometer and humiditymeter. Everything started when my friend (who used to bring me some old electronic rubbish and I used to check if there’s not something useful) brought me some cashing register display similar like that. When I first see them I knew that I will made from it alarm clock.

ATmega Alarm Clock & Thermometer Humidity meter – [Link]

Wireless Nixie Thermometer


by christian.ich.7 @ instructables.com:

The Target of this Project was to learn how to use different functions of the atmega:

• Connecting two Atmegas with a wireless connection
• Each Atmega has a Thermometer (DS1621) to read the actual temperature
• Use the sleep Mode of an Atmega
• Controlling a Nixie bargraph In-13

Wireless Nixie Thermometer – [Link]

Driving a DC motor using PWM with AVR ATmega


Davide Gironi writes:

The PWM frequency have to be selected in the way that the switch frequency is much higher than the dynamics of the motor.
To avoid noise from the motor, the choosen PWM frequency is 20Khz. Which is a know to know frequency.
So, with this one, you can drive up to 4 motors independently controlling:
*slow start / stop
Setup parameters are contained in dcmotorpwm.h

This library was developed on Eclipse, built with avr-gcc on Atmega8 @ 8MHz.


Driving a DC motor using PWM with AVR ATmega – [Link]

Flash several hundred of ATMegas using a CNC


by pleasantsoftware.com:

For a project of mine, I need to flash several hundred of ATMegas.

I use a special programming connector, which sits on the SMD chip and connects directly to the ISP and power pins on the chip.

My first attempt to ease the flashing process was to mount the programming connector to a lever with some additional weight on it. That way, once the connector was in place, I didn’t need to hold down the connector manually during the flashing process.

The PCBs come in panels of 40 (10 x 4 PCBs per panel) with milled slots in between each PCB. So to make the positioning of the PCBs under the connector a little easier (and more repeatable), I put two metal pins (with the same diameter as the milled slots) on the base of the lever.

Flash several hundred of ATMegas using a CNC – [Link]

Make your own dual programmer in AVRDUDE


Stephen Wylie , “Program two ATmegas w/an Arduino & AVRDUDE without re-cabling in between!”

Those of you who have programmed an Arduino through the Arduino or AVR Studio IDE may have noticed the utility that is really doing the work: AVRDUDE (AVR Downloader/UploaDEr). This is a powerful program that can facilitate programming new sketches on top of a bootloader, load a brand new bootloader or chip image, capture the current firmware programmed on the chip, and set fuse bits (which can render your chip unusable without special tools if you’re not careful).


Make your own dual programmer in AVRDUDE – [Link]

3 pins, 3 LEDs, 3 buttons

by Francois AUGER & Philippe Fretaud:

Many previous Design Ideas [1, 2] have shown how to use the Charlieplexing technique [3] to drive as many LEDs as possible with a minimum number of I/O lines. This Design Idea shows how you can drive three LEDs and scan three switches with only three I/O lines instead of six. Using the same principle, it will also be possible to manage four switches and two LEDs, or five LEDs and one switch. It works well with Atmel ATmega microcontrollers including the Arduino, and could be of particular interest for any eight-pin devices, or when you’ve simply run out of I/O.

3 pins, 3 LEDs, 3 buttons – [Link]

ATmega based pool cleaner robot


Here’s a pool cleaner robot built on ATmega by Davide Gironi:

My replacement electronics it is based on ATmega8 micros.
The project is divided into two parts:

cleaning robot

The timer contains the 220 AC to low voltage DC current, and it is out of water, his purpose is to start and stop the cleaning pool robot, which of course is inside the swimming pool.


ATmega based pool cleaner robot – [Link]

Single chip AVR BASIC computer


Dan over at HackAday documented his single chip computer project with the PCBs from DirtyPCBs:

A single AVR microcontroller (the ATmega 1284P) has been used to create a standalone computer system which runs the BASIC programming language. The 1284P runs TinyBASIC Plus, generates RCA video signals (using TVout) and reads PS/2 keyboard input. A single sided PCB was used to hold all the components meaning it is easy to manufacture the computer at home using processes such as photo-etching. Additionally, the component count is fairly low and only one IC is required (the 1284P).


Single chip AVR BASIC computer – [Link]

ATMEGA Core Temperature Sensor

IMG_0720Connor @ narkidae.com

I recently stumbled across an interesting fact in the datasheet for the ATMEGA32u4, the microcontroller I am using for my Einstepper Project. I was surprised to find that Atmel had included a temperature sensor in the core of the device that you can read using the internal ADC. As it turns out, there are many megaAVR devices contain an internal temperature sensor. According to Atmel’s product finder, these devices are:

ATMEGA Core Temperature Sensor – [Link]