Tag Archives: ATMEL

DIY USB Line Power Meter Stick

DIY-USB-Line-Power-Meter-Stick-Connected-to-Laptop-620x503

a new project is published on electro-labs.com, check it out:

Another DIY project designed with FabStream’s SoloPCB tool is ready to be shared with Electro-Labs community. This is an USB stick which measures the supply voltage of the USB port and current drawn by the device connected to the port over the stick. Then it calculates the power consumption of the device and displays the whole information with the help of the small OLED display on the board. The stick itself is also powered from the USB port.

The board is built around an Atmel ATMEGA328 microcontroller. To make the circuit as small as possible, the MCU is used in minimal configuration. Internal 8MHz oscillator is used. The voltage and the current are measured by the internal 10 bit ADC. To make the measurements more accurate, an external 2.5V voltage reference IC, Microchip MCP1525 is included. The current is converted to voltage on a 0.01R sense resistor and precisely amplified by LT6106 before read. The stick can measure up to 2.5A. Since the OLED display requires 3.3V supply voltage, L78L33ACUTR linear voltage regulator is used.

DIY USB Line Power Meter Stick – [Link]

The Atmel SAM L22

20150819015938_AtmelSAML22

by Martin Cooke @ elektormagazine.com:

Atmel has recently announced the addition of the SAM L22 series to its family of secure, ARM® Cortex® M0+-based MCUs. These new devices offer a built-in, ultra-low power capacitive touch interface with a segment LCD controller that can deliver up to 320 segments. Typical applications for these controllers would include low-power devices such as thermostats, electric/gas/water meters, home control, medical and access systems.

Their inbuilt features make them suited to IoT applications and the SAM L22 series includes security capabilities to deliver 256-bit AES, cyclic redundancy check (CRC), true random number generator, Flash protection and tamper detection to ensure information is securely stored, delivered and accessible. The devices use Atmel’s proprietary picoPower® technologies for low power consumption and smart low-power peripherals that work independently of the CPU in sleep modes.

The Atmel SAM L22 – [Link]

ATMEGA16/32 DEVELOPMENT BOARD

C032_1

ATmega16/32 Development Board provides a very simple and cost effective platform for prototyping solution.  The compact design provides connection to all the pins of the microcontroller for the user.

  • Prototyping solution available for 40-pin ATmega series AVR microcontroller from ATMEL
  • All the four ports available to the user via standard 10 pin box header connector with supply of 5 VDC for interfacing circuits
  • Onboard reset switch for easy reset of the microcontroller

ATMEGA16/32 DEVELOPMENT BOARD – [Link]

Wino… like Arduino, only smaller

20150624024339_Winoby Martin Cooke:

The Wino board is an Arduino-like stackable development system which is both smaller and cheaper than Arduino units and features built-in WiFi as standard.

The main Wino controller board measures 26.5 x 18.5 mm and fitted with an Atmel ATSAMD21 running at 48 MHz with 128 kB Flash storage and 16 kB RAM. The board uses the ESP8266EX WiFi module which supports all the 802.11 b/g/n standards offering P2P and soft-AP modes and TCP-IP / UDP, static IP and DHCP networking. The 27-pin stackable connections around the board periphery provide connections for 15 digital GPIO pins, 6 x 12-bit ADCs and a 1 x 10-bit DAC.

Wino… like Arduino, only smaller – [Link]

Simple and extensible microprocessor driver for robots

IMG_1703

robertgawron.blogspot.com

I will start from saying that the board could be replaced by any Arduino plus some(s) its motor driver shield(s). So why I made it you may ask? Well, while I made this tiny tank-robot model presented on below pictures, I wanted to make at least some things by myself, and decide what I need and how I need it instead of only buying prefabricated stuff.

Simple and extensible microprocessor driver for robots – [Link]

Piconomic FW Library 0.4.2 released

tera_term_cli

by Pieter @ piconomic.co.za:

If you can beg, steal or borrow an Atmel ISP programmer, then you can use the Arduino environment to develop on the Atmel AVR Atmega328P Scorpion Board. An Arduino on Scorpion Board guide, Optiboot bootloader and example sketches have been added.

If you own an Arduino Uno board, you can now try out the Piconomic FW Library risk free without abandoning the creature comforts of the Arduino environment. You can use the existing Optiboot bootloader to upload code. I have added a getting started guide for the Arduino Uno. There are examples, including a CLI (Command Line Interpreter) Application that creates a “Linux Shell”-like environment running on the Arduino Uno so that you can experiment with GPIO, ADC, I2C and SPI using only Terminal software (for example Tera Term)… it is really cool!

Piconomic FW Library 0.4.2 released – [Link]

Stand Alone AVR Programmer

IMG_0092

An autonomous AVR ISP programming device with SD-Card, Nokia display, ZIF socket and standard 6-pin ISP interface:

From project to project the number of hex files on our PC was increasing. Many people send us their virgin ATMegas to get them flashed. And last not least distributing PCB’s and pre-flahed chips via agile-hardware forced us to burn many, many AVRs. In principle this is a work an ape should do but reality was different. So we spend munch time in this boring job. To much time …

Thus it was just consequent to think about a device that would do the job for us. Here is the result, the SolderLab Easy Auto Programmer V1.0. An All-in-one AVR programmer with SD-card, Nokia Display, a ZIF-Socket and a 6-pin ISP interface. With this device the programming of an AVR is done in seconds including the setting of fuse bits (before AND after flashing), flashing the chip, verifying the flash. And all this without any connection to the PC and by pressing just one single button. You just have to put all your hex files into a folder called “hex” on a standard FAT32 formatted SD card, put the card into the programmer an supply it with some voltage (7-20V). That’s it the rest is done by the “ape”.

Stand Alone AVR Programmer – [Link]

Atmel ATmega328P Scorpion Board

 

piconomic_scorpion_board

This minimalistic board is packed with features and comes with an extensive ecosystem of documentation and firmware.

For the student (we are never too old) that wants to fast track his career as a professional firmware developer there is:

  • a detailed getting started guide
  • an Atmel AVR quick start guide, with tutorials and examples
  • Recommend best practices

For the developer that wants to improve his game there is:

  • A header to quickly connect different kinds of peripherals (GPIO, A/D, UART, SPI & I2C). Notice that each interface has it’s own +3V3 and GND pins to make wiring easier and also improves EMC.
  • A full-featured CLI application to experiment with the connected device and verify that it works, before committing to a single line of C code.
  • A firmware framework that lays the foundation so that you can quickly develop a new application.
  • A Temp&Pressure Logger and Analog voltage Logger application that demonstrates how you can quickly develop your own custom logging application using the onboard AT45D DataFlash.

Atmel ATmega328P Scorpion Board – [Link]

Two new MCUs from Atmel

AtmelG54_G55

by elektor.com:

AtmelCorporation have announced two additions to their SAM G series of ARMCortex-M4-based MCUs. The two latest models are designated the SAM G54 and SAM G55. They feature high performance (up to 120MHz), low-power (102 µA/MHz in active mode, down to 5 µs wake-up) and tiny outline (as small as 2.84 x 2.84mm). Both are targeted at IoT applications and include all the features of the current SAM G family of devices including an Atmel | SMART ARM Cortex-M4 MCU + FPU (floating point unit) together with integrated sensor fusion algorithms.

Two new MCUs from Atmel – [Link]

LED step-up converter with ATtiny85

640px-LedStepUpCircuit

by hackerspace-ffm.de:

Build a cheap and simple full software controlled step-up (boost) converter to drive a LED string of 10 LEDs. LEDs are used as string to light up a acrylic engraved plate placed in a holder (also made out 5 layers of lasered black acrylic glas). Step up is from 5V to about 30V, current regulated to about 20mA.

LED step-up converter with ATtiny85 – [Link]