Tag Archives: BLE

Next-generation Bluetooth Low Energy SoC from ST

Graham Prophet @ eedesignnewseurope.com introduces BlueNRG-2, the latest BLE solution from ST. He writes:
Introducing its latest-generation Bluetooth Low Energy (BLE) System-on-Chip, ST Microelectronics highlights low power, small size, and high performance to enable widespread deployment of energy-conscious, space-constrained applications with BLE connectivity. The device provides state-of-the-art security and is Bluetooth 5.0-certified
Next-generation Bluetooth Low Energy SoC from ST – [Link]

Bluey, BLE Development Board Supports NFC

Development boards are assistant tools that help engineers and enthusiasts to become familiarized with hardware development. They simplify the process of controlling and programming hardware, such as microcontrollers and microprocessors.

Electronut Labs, an embedded systems consulting company, had produced its new BLE development board “Bluey” with a set of useful sensors and NFC support.

Bluey is an open source board that features the Nordic nRF52832 SoC which supports BLE and other proprietary wireless protocols. Bluey has built-in sensors that include temperature, humidity, ambient light and accelerometer sensors. Also, it supports NFC and comes with a built-in NFC PCB antenna.

The nRF52832 SoC is a powerful, ultra-low power multiprotocol SoC suited for Bluetooth Low Energy, ANT and 2.4GHz ultra low-power wireless applications. It is built around a 32-bit ARM Cortex™-M4F CPU with 512kB + 64kB RAM.

Bluey Specifications:

  • Nordic nRF52832 QFAA BLE SoC (512k Flash / 64k RAM)
  • TI HDC1010 Temperature/Humidity sensor
  • APDS-9300-020 ambient light sensor
  • ST Micro LSM6DS3 accelerometer
  • CREE RGB LED
  • CP2104 USB interface
  • 2 push buttons
  • Coin cell holder
  • Micro SD slot
  • 2.4 GHz PCB antenna
  • NFC PCB antenna

Bluey can be programmed using the Nordic nRF5 SDK. You can upload the code with an external programmer such as the Nordic nRF52-DK, or the Black Magic Probe firmware on STM32F103 breakout. But, within the built-in OTA (over the air) bootloader, you can upload the code directly using a PC or a phone.

The sensors on the board require a minimum of 2.7 volts to function properly, and the maximum power is 6 volts. Bluey’s design offers three different ways to power it, all of them have a polarity protection:

  1. Using the 5V micro USB connector (which also gives you the option to print debug messages via UART).
  2. The + / – power supply pins which can take regular 2.54 mm header pins, a JST connector for a 3.7 V LiPo battery, or a 3.5 mm terminal block.
  3. A CR2032 coin cell for low power applications.

You can use Bluey for a wide range of projects. The BLE part is ideal for IoT projects, or if you want to control something with your phone. The nRF52832 SoC has a powerful ARM Cortex-M4F CPU, so you can use this board for general purpose microcontroller projects as well.

Bluey is available for $29 for international customers from Tindie store. Indian customers can purchase it from Instamojo store. There are also discounts for bulk purchases. For more information about the board visit its github repository, where you will find a full guide to start and a bunch of demo projects.

Twiz – Tiny Wireless IMUs

Tiny Wireless IMUs – 100% open & autonomous 9DoF motion sensor using BLE to control anything from your [objects] motion ! by Drix @ hackaday.io:

We looked for tiny, autonomous, easy to use, and 9 Degrees of Freedom IMU, but none of the available wireless motion sensors were affordable enough to really unlock creativity, so we built one.

Twiz – Tiny Wireless IMUs – [Link]

Add WiFi & Bluetooth Easily With Koala® Connect Modules

Clarinox Technologies Pty Ltd was formed with the aim of providing cost effective and innovative wireless embedded systems solutions to business. Due to the experience of the Clarinox team, more embedded systems are designed to develop leading edge solutions. In addition to delivering flexible and robust wireless protocol software for embedded systems developments.

Clarinox hottest products are Koala® Connect Modules! A compact option for adding Wi-Fi® and / or Bluetooth® to new and existing projects.

These modules will give you a stable environment while used with Koala® EVM, the first and only development board to support development for all major wireless technologies. It enables embedded systems developers to create both low and high power wireless systems communicating over Wi-Fi, Bluetooth Classic and Bluetooth Low Energy. It provides a fast and cost effective way to commence embedded wireless development with all major wireless technologies.

Each module features a single onboard processor to drive the user application in addition to multiple wireless protocols. The modules available are:

Koala® Connect Modules
KM-141201 (20 x 30mm BT/BLE)
KM-153101 (20 x 34mm Wi-Fi+BT/BLE)

Carrier Board for Koala® Connect
KC-018102

Sensor Modules
KM-990501 Sensor Board

The Koala EVM and wireless module family will help shorten development time, reduce development costs, and open the door to new possibilities for wireless device features.

And these are the specifications

Hardware Specifications

MCU: STM32F411 (Bluetooth/BLE), STM32F412 (Wi-Fi + Bluetooth/BLE)

Wi-Fi Radio: TI WL1831MOD / WL1837MOD

  • 802.11 a/b/g/n
  • 2.4 GHz & 5 GHz
  • -96.3dBm RX Sensitivity
  • STA, AP & Wi-Fi Direct Modes

Bluetooth / Bluetooth LE Radio: TI WL1831MOD / WL1837MOD

  • Dual-mode Bluetooth & Bluetooth Low Energy
  • Bluetooth v4.1 Compliance and CSA2 Support
  • Host Controller Interface (HCI) Transport for Bluetooth Over UART

I/O Signals: ADC, GPIO, I2C, I2S, SPI, UART, USB

Industrial Temperature Grade: -40°C to +85°C

Software Specifications

Supported Technologies: Wi-Fi WLAN, Wi-Fi Direct Concurrent Operation (Multichannel, Multirole), Bluetooth, Bluetooth LE

You can get your own products from Clarinox by filling this inquiry. More details about Koala Connect Modules are available here, also a start manual for KoalaEVM is available here.

Arduino-Programmable ESP32 Development Board

Ezsbc, an American embedded control solutions retailer, had produced a new development board that simplifies working with ESP32 module and makes it programmable via USB using the Arduino IDE.

The ESP32 is a low cost, ultra low power microcontroller with integrated Wi-Fi & dual-mode Bluetooth, which employs a dual-core Tensilica Xtensa LX6 microprocessor. ESP32 is created and developed by Espressif Systems for mobile devices, wearable electronics and IoT applications. It is a successor to the ESP8266 microcontroller.

Other than the ESP32 module, the board has an FTDI FT231XS USB to Serial converter, a 3.3V LDO, reset and flash switches and a multi color LED. The module can be programmed directly from the Arduino environment with 921600 bps upload speed.

It supports auto-download and will automatically be set in download mode by the downloader. Once the download is complete the board will be reset, just like a normal Arduino board.

Features of the ESP32 board:

  • 240 MHz dual core Tensilica LX6 microcontroller with 600 DMIPS
  • Integrated 520 KB SRAM
  • Integrated 802.11BGN HT40 Wi-Fi transceiver, baseband, stack and LWIP
  • Integrated dual mode Bluetooth (classic and BLE)
  • 16 MByte flash
  • 2.2V to 3.6V operating voltage
  • On-board PCB antenna
  • 3 x UARTs, including hardware flow control
  • 3 x SPI
  • 2 x I2S
  • 12 x ADC input channels
  • 2 x DAC
  • 2 x I2C
  • PWM/timer input/output available on every GPIO pin
  • SDIO master/slave 50 MHz
  • Supports external SPI flash up to 16 MB
  • SD-card interface support

The board is available for $17 on tindie store. Datasheet, documentation, and schematics are also available there.

Send Touch Over Distance With HEY Bracelet

HEY is an innovative bracelet that really makes you feel connected to a loved one. It uses a unique technology to send your touch as far as needed. It’s the first bracelet that mimics a real human touch, not by producing a mechanical vibration or buzzing sensation, but an actual gentle squeeze.

On Valentine’s Day the stylish piece of smart jewelry was launched on Kickstarter and within one hour it was already ‘trending’. Check the campaign video:

The bracelet incorporates advanced technology that communicates through Bluetooth with your smartphone. The ingenious design  ensures that a touch wouldn’t be sent accidentally. In order to send a message you should touch the bracelet in two places and it will be transferred directly to your phone and from there to the connected HEY bracelet anywhere in the world.

Via Bluetooth HEY is connected to an app on your smartphone. This app makes sure all your little squeezes reach the other bracelet directly. It also helps you pair the bracelets easily, fast and without any hassle. And last but not least it keeps track of your love stats. For instance the distance between you and your loved one or the last time you were together. If desired, these features can be turned off. In the future more features will be added to the app.

HEY is invented by Mark van Rossem. He looked at the current world of communication and saw that one thing was missing. And that thing was touch. People communicate through technology 24/7, but there is always a physical distance separating them. So Mark set himself the seemingly impossible goal to send touch at great distances and came up with the idea for HEY. Together with successful entrepreneur, David van Brakel, he gathered a team of creative and technical professionals that have all earned their credentials in their field of expertise. Together they want to build products that bring people closer.

“From a simple touch like squeezing someone’s hand, to hugging, social touch is important in the way we maintain healthy and happy social relationships with the people that we care about most.” – Gijs Huisman, who collaborated in developing bracelet, is an expert at the University of Twente in the field of Social Touch Technology and has been researching haptic technology (touch by tech) for five years now.

No need to worry a lot about the safety of the bracelet electronics since the design is weatherproof. With only 30 minutes of charging, you will be able to send touches for around 3 weeks!

HEY adds a completely new dimension to relationships and more haptic products will be developed in the near future. For more information and updates, check the official website and the Kickstarter campaign. 35 days are left to pre-order 2 HEY bracelets with the Kickstarter deal for €83 which is 30% of the retail price.

DIY BLE Thermometer With Arduino and Blynk

Konstantin Dimitrov has shared a new tutorial on Arduino Project Hub on how to make an Arduino/Genuino 101 Bluetooth Low Energy (BLE) thermometer with TMP102 and Blynk. Blynk is a platform with iOS and Android apps to control Arduino, Raspberry Pi and the likes over the Internet. You can easily build graphical interfaces for all your projects by simply dragging and dropping widgets.

You will need:

In order to program this project, you should first include Blynk library by going to:

Sketch => Include Library => Manage Libraries. Click on “Manage Libraries”, then type Blynk in the search bar and you will get the library.  You should scan this QR code once you install the Blynk app on your smartphone to complete the settings.

“Now you need to get the “Auth Token”. Tap on the “Nut” icon then tap on the device and again on it, now you should see your “Auth Token”. E-mail or rewrite it, cause you will need it in the next step !”

In order to connect the Blynk app, tap on the Bluetooth app, tap on “Connect BLE Device” and choose your 101 board. You are now connected!

Finally upload this sketch on you Arduino:

/**************************************************************
 * Blynk is a platform with iOS and Android apps to control
 * Arduino, Raspberry Pi and the likes over the Internet.
 * You can easily build graphic interfaces for all your
 * projects by simply dragging and dropping widgets.
 *
 * This sketch was created by Konstatin Dimitrov 
 * under GNU v3.0 Licence 
 * 
 * Based on example scetch: Arduino_101_BLE
 ***************************************************
 *
 * This scetch shows how to send data from TMP102 with 
 * Arduino/Genuino 101 BLE to Blynk.
 *
 * Note: This requires CurieBLE library
 *   from http://librarymanager/all#CurieBLE
 *
 * NOTE: BLE support is in beta!
 *
 **************************************************************/

//#define BLYNK_USE_DIRECT_CONNECT

#define BLYNK_PRINT Serial

#include <Wire.h>
#include <BlynkSimpleCurieBLE.h>
#include <CurieBLE.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "AUTH_TOKEN";

//TMP102 I2C (TWI) address in HEX
int tmp102Address = 0x48;

BLEPeripheral  blePeripheral;

void setup() {
  Serial.begin(9600);
  Wire.begin();
  delay(1000);
  
  blePeripheral.setLocalName("BLE Thermometer");
  blePeripheral.setDeviceName("BLE Thermometer");
  blePeripheral.setAppearance(384);

  Blynk.begin(blePeripheral, auth);

  blePeripheral.begin();
  
  Serial.println("Waiting for connections...");
}

//Temperature readings in Celsius on V0
BLYNK_READ(0)
  {
  float celsius = getTemperature();
  Blynk.virtualWrite(0, celsius);
  }
//Temperature readings in Fahrenheit on V1
BLYNK_READ(1)
  {
  float celsius = getTemperature();
  float fahrenheit = (1.8 * celsius) + 32;
  Blynk.virtualWrite(1, fahrenheit);
  }

BLYNK_READ(2)
  {
  float celsius = getTemperature();
  float kelvin = 273.15 + celsius;
  Blynk.virtualWrite(2, kelvin);
  }
  
void loop() {
  Blynk.run();
  blePeripheral.poll();
  }

float getTemperature(){
  Wire.requestFrom(tmp102Address,2); 

  byte MSB = Wire.read();
  byte LSB = Wire.read();

  //it's a 12bit int, using two's compliment for negative
  int TemperatureSum = ((MSB << 8) | LSB) >> 4; 

  float celsius = TemperatureSum*0.0625;
  return celsius;
}

To know more details, check the project’s page. Also check more projects by Konstnatin and follow him!

SensorTile, An Accurate Development Kit For Biometric Wearables

Valencell, a biometric wearable sensor technology company, in partnership with STMicroelectronics, an electronics and semiconductor manufacturer, announced a new highly accurate and scalable development kit for biometric wearables. The kit combines ST’s compact SensorTile turnkey multi-sensor module with Valencell’s Benchmark biometric sensor system.

The SensorTile is a tiny IoT module (13.5mm x 13.5mm) that features a powerful STM32L4 microcontroller, a Bluetooth Low Energy (BLE) chipset, a wide spectrum of high-accuracy motion and environmental MEMS sensors (accelerometer, gyroscope, magnetometer, pressure, temperature sensor), and a digital MEMS microphone.

The on-board low-power STM32L4 microcontroller makes it work as a sensing and connectivity hub for developing firmware and shipping in products such as wearables, gaming accessories, and smart-home or IoT devices.

Key Features:

  • FCC (ID: S9NSTILE01) and IC (IC: 8976C-STILE01) certified
  • Included in the development kit package:
    • SensorTile module
    • SensorTile expansion Cradle board equipped with audio DAC, USB port, STM32 Nucleo, Arduino UNO R3 and SWD connector
    • SensorTile Cradle with battery charger, humidity and temperature sensor, SD memory card slot, USB port and breakaway SWD connector
    • 100 mAh Li-Ion battery
    • Plastic box for housing the SensorTile cradle and the battery
    • SWD programming cable
  • Software libraries and tools
    • STSW-STLKT01: SensorTile firmware package that supports sensors raw data streaming via USB, data logging on SDCard, audio acquisition and audio streaming. It includes low level drivers for all the on-board devices
    • BLUEMICROSYSTEM1 and BLUEMICROSYSTEM2: STM32Cube expansion software package, supporting different algorithms tailored to the on-board sensors
    • FP-SNS-ALLMEMS1 and FP-SNS-MOTENV1: STM32 ODE functional packs
    • ST BlueMS: iOS and Android demo Apps
    • BlueST-SDK: iOS and Android Software Development Kit
    • Compatible with STM32 ecosystem through STM32Cube support

“Valencell’s Benchmark solution leverages the high accuracy of ST’s MEMS sensor technology along with SensorTile’s miniature form factor, flexibility, and STM32 Open Development Environment-based ecosystem,” said Tony Keirouz, Vice President Marketing and Applications, Microcontrollers, Security, and Internet of Things, STMicroelectronics. “Combined, SensorTile and Benchmark enable wearable makers to quickly and easily develop the perfect product for any application that integrates highly accurate biometrics.”

Integrating ST’s SensorTile development kit with Valencell’s Benchmark sensor technology simplifies the prototyping, evaluation, and development of innovative wearable and IoT solutions. That’s done by delivering a complete Valencell PerformTek technology package, ready for immediate integration and delivery into wearable devices. The collaboration with ST expands on previous work that incorporated the company’s STM32 MCUs and sensors into Valencell’s Benchmark sensor system.

“Working with ST has allowed us to bring together the best of all sensors required to support the most advanced wearable use cases through our groundbreaking Benchmark sensor system,” said Dr. Steven LeBoeuf, president and co-founder of Valencell.

The kit is in volume production and is available for about $80. You can order it and get more information and technical details through the official page.

Source: ElectronicSpecifier

MDBT42Q, nRF52832-based BLE module

The open hardware innovation platform Seeedstudio produces the MDBT42Q, a Bluetooth Low Energy (BLE) module. It is a BT 4.0, BT 4.1 and BT 4.2 module designed based on Nordic nRF52832 SoC, a powerful, highly flexible ultra-low power multiprotocol SoC ideally suited for Bluetooth low energy, ANT and 2.4GHz ultra low-power wireless applications.

txsxl4eeqdrnhrm9pk21et1w

MDBT42Q features a dual transmission mode of BLE and 2.4 GHz RF with over 80 meters working distance in open space. It is a 16 x 10 x 2.2 mm board which contains GPIO, SPI, UART, I2C, I2S, PWM and ADC interfaces for connecting peripherals and sensors.

nrf52832_mediumThe nRF52832 SoC is built around a 32-bit ARM® Cortex™-M4F CPU with 512kB and 64kB RAM. The embedded 2.4GHz transceiver supports Bluetooth low energy, ANT and proprietary 2.4 GHz protocol stack. It is on air compatible with the nRF51 Series, nRF24L and nRF24AP Series products from Nordic Semiconductor.

MDBT42Q Specifications:

  • Multi-protocol 2.4GHz radio
  • 32-bit ARM Cortex – M4F processor
  • 512KB flash programmed memory and 64KB RAM
  • Software stacks available as downloads
  • Application development independent from protocol stack
  • On-air compatible with nRF51, nRF24AP and nRF24L series
  • Programmable output power from +4dBm to -20dBm
  • RAM mapped FIFOs using EasyDMA
  • Dynamic on-air payload length up to 256 bytes
  • Flexible and configurable 32 pin GPIO
  • Simple ON / OFF global power mode
  • Full set of digital interface all with Easy DMA including:
  • 3 x Hardware SPI master ; 3 x Hardware SPI slave
  • 2 x two-wire master ; 2 x two-wire slave
  • 1 x UART (CTS / RTS)
  • PDM for digital microphone
  • I2S for audio
  • 12-bit / 200KSPS ADC
  • 128-bit AES ECB / CCM / AAR co-processor
  • Lowe cost external crystal 32MHz ± 40ppm for Bluetooth ; ± 50ppm for ANT Plus
  • Lowe power 32MHz crystal and RC oscillators
  • Wide supply voltage range 1.7V to 3.6V
  • On-chip DC/DC buck converter
  • Individual power management for all peripherals
  • Timer counter
  • 3 x 24-bit RTC
  • NFC-A tag interface for OOB pairing
  • RoHS and REACH compliant

pcb

This BLE module can be used in a wide range of applications, such as Internet of Things (IoT), Personal Area Networks, Interactive entertainment devices, Beacons, A4WP wireless chargers and devices, Remote control toys, and computer peripherals and I/O devices.

Full specifications, datasheet, and product documents are available at seeedstudio store, it can be backordered for only $10.

PureModules, IoT Building Blocks

New range of building blocks for IoT development are just out there! Just like LEGO, PUREmodules by Pure Engineering are the building blocks for IoT connected smart sensors where there is no need to solder, using breadboard or wires. It’s all done just by snapping the modules together and writing some lines of code.

original

The modules that are already designed are:

  • COREModule
  • SUPER SENSOR module
  • General Purpose IO modules via I2C Expanders
  • I2C ADC and DAC modules
  • Energy Harvesting Modules
  • Low power chemical Sensors
  • PIN diode Radiation Detector Module
  • I2C thermal camera modules
  • Dual I2C DC motor Module
  • GPS and IMU Module
  • Long Range LoRa RF modules (10+ miles)
  • Li-Ion and other Power modules
  • Ethernet Module
  • Low Power LCD module
  • User IO button and LED modules
  • Multiple Core modules; CC2650, EFM32, ESP32 and more.
  • Adapter modules to other sensor systems such as Grove and LittleBits
  • Adapters to popular platforms such as Arduino and Raspberry Pi.

Only COREmodule and SUPER SENSOR module are live now in the Kickstarter campaign that Pure Engineering has launched, check the campaign video:

COREmodule

The brain of other modules based on nRF52832 SOC. It is compatible with Arduino and a number of other open source frameworks, it has an onboard antenna and able to update its firmware over the air. Also it supports these IoT operating systems: Mynewt, Zephyr, Contiki OS, RIOT-OS, and mbed OS.

puremodules-internet-of-things-building-blocks

SUPER SENSOR module

This multi function sensor can be used in home automation and monitoring, health tracking, and industrial measurement. It contains the following embedded sensors: barometric pressure, humidity, temperature, accelerometer, magnetometer, UVA UVB, RGB, IR, and heart rate pulse oximetry.

526b08edc29e47c86e921a0a849389af_original

PUREmodules goal is to simplify IoT development for hackers, tinkerers and designers and to propose a new easy way of interaction and control everything through the Internet. More details can be found at the official website and the Kickstarter campaign. You can pre-order a COREmodule and SUPER SENSOR for $59 as an early bird pledge.