Tag Archives: Bluetooth

Arduino-Programmable ESP32 Development Board

Ezsbc, an American embedded control solutions retailer, had produced a new development board that simplifies working with ESP32 module and makes it programmable via USB using the Arduino IDE.

The ESP32 is a low cost, ultra low power microcontroller with integrated Wi-Fi & dual-mode Bluetooth, which employs a dual-core Tensilica Xtensa LX6 microprocessor. ESP32 is created and developed by Espressif Systems for mobile devices, wearable electronics and IoT applications. It is a successor to the ESP8266 microcontroller.

Other than the ESP32 module, the board has an FTDI FT231XS USB to Serial converter, a 3.3V LDO, reset and flash switches and a multi color LED. The module can be programmed directly from the Arduino environment with 921600 bps upload speed.

It supports auto-download and will automatically be set in download mode by the downloader. Once the download is complete the board will be reset, just like a normal Arduino board.

Features of the ESP32 board:

  • 240 MHz dual core Tensilica LX6 microcontroller with 600 DMIPS
  • Integrated 520 KB SRAM
  • Integrated 802.11BGN HT40 Wi-Fi transceiver, baseband, stack and LWIP
  • Integrated dual mode Bluetooth (classic and BLE)
  • 16 MByte flash
  • 2.2V to 3.6V operating voltage
  • On-board PCB antenna
  • 3 x UARTs, including hardware flow control
  • 3 x SPI
  • 2 x I2S
  • 12 x ADC input channels
  • 2 x DAC
  • 2 x I2C
  • PWM/timer input/output available on every GPIO pin
  • SDIO master/slave 50 MHz
  • Supports external SPI flash up to 16 MB
  • SD-card interface support

The board is available for $17 on tindie store. Datasheet, documentation, and schematics are also available there.

Embedded IoT gateway, in a 17 x 25 mm footprint

Lantronix, Inc. has added the xPico 200 family of embedded IoT gateways that measure 17 by 25 mm, to rpvide secure Ethernet, Wi-Fi and/or Bluetooth connectivity for smart IoT solutions. by Graham Prophet @ edn-europe.com:

The xPico 200 series will feature enterprise security, networking intelligence, and pre-integration with Lantronix’s MACH10 management software platform in a compact footprint that enables the functionality of a powerful IoT device gateway to be integrated into machines not previously practical.

Embedded IoT gateway, in a 17 x 25 mm footprint – [Link]

Zero W, New €10 Raspberry Pi with WLAN and Bluetooth

Five years ago (on 29 February 2012, to be exact) the original Raspberry Pi was unveiled – on this celebrated first day the available stock was sold out within a few minutes, more than 100,000 boards were ordered and the Farnell and RS Components web stores where down for while because of the high demand…
To celebrate this fifth anniversary the Raspberry Pi Foundation introduces a new product: the Raspberry Pi Zero W, that is, the Raspberry Pi Zero complete with WLAN and Bluetooth. The bad new is that this version costs twice as much as the original Zero, but the good news is that it is nevertheless available for only $10 (without accessories).


The Zero was launched in November of 2015 and has since then acquired a camera connector; these days you could hardly imagine anything or contains a Zero – from miniature fruit machines tot electric skate boards.
A disadvantage of the original Zero was the limited connectivity: the only USB port was often used for a wireless dongle; for connecting peripherals such as a keyboard, mouse and network adapter a USB hub was required, which often cost more than the Zero itself.
By integrating the Cypress CYW43438 on the board this problem is solved for the Zero W: this is the same chip that on the RPi 3 model B provides the 820.11n WLAN and Bluetooth 4.0 connectivity. Listing all the features of the Zero W:

  • 1 GHz single-core CPU
  • 512 MB RAM
  • mini HDMI port
  • micro-USB On-The-Go port
  • micro USB power
  • HAT-compatibele 40-pin header
  • headers for composite video and reset
  • CSI camera connector
  • 802.11n WLAN
  • Bluetooth 4.0

The Zero W is accompanied by an ‘official’ enclosure.
This has three interchangeable lids: a closed lid, a lid with openings for the GPIOs, and a lid with opening and attachment facility for a camera.

Source: Elektor

Bluetooth chip is only 4x4mm

by Julien Happich @ edn-europe.com:

Part of the Swatch group, EM Microelectronic announced what the company believes to be the world’s smallest Bluetooth chip. Offered in a 4x4mm QFN-28 package, in a WLCSP-21 or as a bare-die, the EM9304 is optimized for Bluetooth v4.2 low energy enabled products.

Send Touch Over Distance With HEY Bracelet

HEY is an innovative bracelet that really makes you feel connected to a loved one. It uses a unique technology to send your touch as far as needed. It’s the first bracelet that mimics a real human touch, not by producing a mechanical vibration or buzzing sensation, but an actual gentle squeeze.

On Valentine’s Day the stylish piece of smart jewelry was launched on Kickstarter and within one hour it was already ‘trending’. Check the campaign video:

The bracelet incorporates advanced technology that communicates through Bluetooth with your smartphone. The ingenious design  ensures that a touch wouldn’t be sent accidentally. In order to send a message you should touch the bracelet in two places and it will be transferred directly to your phone and from there to the connected HEY bracelet anywhere in the world.

Via Bluetooth HEY is connected to an app on your smartphone. This app makes sure all your little squeezes reach the other bracelet directly. It also helps you pair the bracelets easily, fast and without any hassle. And last but not least it keeps track of your love stats. For instance the distance between you and your loved one or the last time you were together. If desired, these features can be turned off. In the future more features will be added to the app.

HEY is invented by Mark van Rossem. He looked at the current world of communication and saw that one thing was missing. And that thing was touch. People communicate through technology 24/7, but there is always a physical distance separating them. So Mark set himself the seemingly impossible goal to send touch at great distances and came up with the idea for HEY. Together with successful entrepreneur, David van Brakel, he gathered a team of creative and technical professionals that have all earned their credentials in their field of expertise. Together they want to build products that bring people closer.

“From a simple touch like squeezing someone’s hand, to hugging, social touch is important in the way we maintain healthy and happy social relationships with the people that we care about most.” – Gijs Huisman, who collaborated in developing bracelet, is an expert at the University of Twente in the field of Social Touch Technology and has been researching haptic technology (touch by tech) for five years now.

No need to worry a lot about the safety of the bracelet electronics since the design is weatherproof. With only 30 minutes of charging, you will be able to send touches for around 3 weeks!

HEY adds a completely new dimension to relationships and more haptic products will be developed in the near future. For more information and updates, check the official website and the Kickstarter campaign. 35 days are left to pre-order 2 HEY bracelets with the Kickstarter deal for €83 which is 30% of the retail price.

DIY BLE Thermometer With Arduino and Blynk

Konstantin Dimitrov has shared a new tutorial on Arduino Project Hub on how to make an Arduino/Genuino 101 Bluetooth Low Energy (BLE) thermometer with TMP102 and Blynk. Blynk is a platform with iOS and Android apps to control Arduino, Raspberry Pi and the likes over the Internet. You can easily build graphical interfaces for all your projects by simply dragging and dropping widgets.

You will need:

In order to program this project, you should first include Blynk library by going to:

Sketch => Include Library => Manage Libraries. Click on “Manage Libraries”, then type Blynk in the search bar and you will get the library.  You should scan this QR code once you install the Blynk app on your smartphone to complete the settings.

“Now you need to get the “Auth Token”. Tap on the “Nut” icon then tap on the device and again on it, now you should see your “Auth Token”. E-mail or rewrite it, cause you will need it in the next step !”

In order to connect the Blynk app, tap on the Bluetooth app, tap on “Connect BLE Device” and choose your 101 board. You are now connected!

Finally upload this sketch on you Arduino:

/**************************************************************
 * Blynk is a platform with iOS and Android apps to control
 * Arduino, Raspberry Pi and the likes over the Internet.
 * You can easily build graphic interfaces for all your
 * projects by simply dragging and dropping widgets.
 *
 * This sketch was created by Konstatin Dimitrov 
 * under GNU v3.0 Licence 
 * 
 * Based on example scetch: Arduino_101_BLE
 ***************************************************
 *
 * This scetch shows how to send data from TMP102 with 
 * Arduino/Genuino 101 BLE to Blynk.
 *
 * Note: This requires CurieBLE library
 *   from http://librarymanager/all#CurieBLE
 *
 * NOTE: BLE support is in beta!
 *
 **************************************************************/

//#define BLYNK_USE_DIRECT_CONNECT

#define BLYNK_PRINT Serial

#include <Wire.h>
#include <BlynkSimpleCurieBLE.h>
#include <CurieBLE.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "AUTH_TOKEN";

//TMP102 I2C (TWI) address in HEX
int tmp102Address = 0x48;

BLEPeripheral  blePeripheral;

void setup() {
  Serial.begin(9600);
  Wire.begin();
  delay(1000);
  
  blePeripheral.setLocalName("BLE Thermometer");
  blePeripheral.setDeviceName("BLE Thermometer");
  blePeripheral.setAppearance(384);

  Blynk.begin(blePeripheral, auth);

  blePeripheral.begin();
  
  Serial.println("Waiting for connections...");
}

//Temperature readings in Celsius on V0
BLYNK_READ(0)
  {
  float celsius = getTemperature();
  Blynk.virtualWrite(0, celsius);
  }
//Temperature readings in Fahrenheit on V1
BLYNK_READ(1)
  {
  float celsius = getTemperature();
  float fahrenheit = (1.8 * celsius) + 32;
  Blynk.virtualWrite(1, fahrenheit);
  }

BLYNK_READ(2)
  {
  float celsius = getTemperature();
  float kelvin = 273.15 + celsius;
  Blynk.virtualWrite(2, kelvin);
  }
  
void loop() {
  Blynk.run();
  blePeripheral.poll();
  }

float getTemperature(){
  Wire.requestFrom(tmp102Address,2); 

  byte MSB = Wire.read();
  byte LSB = Wire.read();

  //it's a 12bit int, using two's compliment for negative
  int TemperatureSum = ((MSB << 8) | LSB) >> 4; 

  float celsius = TemperatureSum*0.0625;
  return celsius;
}

To know more details, check the project’s page. Also check more projects by Konstnatin and follow him!

The Winkel Board, All-in-one Arduino Compatible Board

Mintbox Technologies is an Indian tech startup who build smarter connected devices for everyone. It is specialized in consumer electronics, open source software & hardware, PCB design services. Mintbox latest product is The Winkel Board, a powerful new Arduino-compatible, open source hardware platform for development and prototyping.

 

Based on the Atmel ATmega128 microcontroller, The Winkel Board is designed to be easy to use for both junior and senior makers including many popular peripherals such as WiFi, radio, and Bluetooth on board.

Check this video to know The Winkel Board features:

 

By providing an all-in-one compatible Arduino board, Mintbox team is working to solve the routine each maker does before starting a project, which they clarify in this list:

TODO for a maker while building something awesome:
-Prepare a list of right electronics components
-Prepare BOM
-Search them locally or online to fit the BOM
-Wait for the components to arrive if sourced online
-Getting started with prototyping
-Go online again studying libraries and figuring out how they can be interfaced on breadboard or etch a PCB
-Finally start building and actually working on your project and then try not to rage quit

The Winkel Board specifications

  • MCU – Microchip/Atmel ATmega128 MCU @ 16 MHz with 128KB flash memory, 4KB SRAM, 4KB EEPROM
  • Connectivity
    • WiFi 802.11 b/g/n via ESP12E module based on ESP8266
    • Bluetooth 2.0 + EDR via HC-05 module
    • RF Radio – NRF24l01 2.4 GHz ISM radio.
  • I/Os (through both Atmel MCU and ESP8266)
    • 38x Digital I/Os
    • 7x PWM Digital I/Os
    • 8x Analog Inputs
  • USB – micro USB port for programming and power
  • Misc – DS3231 Real-Time Clock + CR2032 battery slot, a few LEDS, reset button, jumper for OTA mode, ISP header, optional MPU-6050 Gyro+accelerometer mount
  • Power Supply – 5 V
  • Dimensions – TBD
Pinout Diagram

 

This board is said to be a one stop platform, that combines different communication protocols and allows a lot of I/O operations, thus you can do everything at once or choose specific on-board components to work with.

The Winkel Board is completely open source, you can check Mintbox’s Github once they upload all the source files soon. This board is now live in a crowd -funding campaign, you can pre-order your own Winkel now for around $21.

Bluetooth 5 Is Here!

The Bluetooth Special Interest Group (SIG) has officially launched the core specifications of the new version of Bluetooth: Bluetooth 5. These specifications include longer range, faster speed, and larger broadcast message capacity, as well as improved interoperability and coexistence with other wireless technologies than recent Bluetooth versions, making it possible to advance IoT applications and usages.

Bluetooth is revolutionizing how people experience the IoT. Bluetooth 5 continues to drive this revolution by delivering reliable IoT connections and mobilizing the adoption of beacons, which in turn will decrease connection barriers and enable a seamless IoT experience” says Mark Powell, SIG’s executive director.

Keeping up with powering IoT, Bluetooth 5 has some additional features that better enable industrial automation and whole home coverage by addressing challenges like range and download speeds. It is said to improve location awareness with a smarter technology that collects data to provide personalized experiences for the end user.

While doubling the speed to enable the making of more responsive devices, Bluetooth 5 developers didn’t miss to maintain low-power consumption that results a faster data transfer.

By 2021, ABI Research predicts 48 billion internet-enabled devices will be installed, and Bluetooth—predicted to be in nearly one-third of those devices—is a cornerstone of that growth.

“The global wireless connectivity market is growing rapidly, with an anticipated 10 billion annual IC shipments by 2021,” said Andrew Zignani with ABI Research. “The introduction of Bluetooth 5 will create new opportunities in various verticals of the IoT market by reducing complexity and cost and giving manufacturers greater flexibility in targeting multiple applications and use cases.”

Within two to six months, new products are expected to be launched using this ubiquitous technology, so stay tuned!

More details about Bluetooth 5 here: www.bluetooth.com/bluetooth5

MDBT42Q, nRF52832-based BLE module

The open hardware innovation platform Seeedstudio produces the MDBT42Q, a Bluetooth Low Energy (BLE) module. It is a BT 4.0, BT 4.1 and BT 4.2 module designed based on Nordic nRF52832 SoC, a powerful, highly flexible ultra-low power multiprotocol SoC ideally suited for Bluetooth low energy, ANT and 2.4GHz ultra low-power wireless applications.

txsxl4eeqdrnhrm9pk21et1w

MDBT42Q features a dual transmission mode of BLE and 2.4 GHz RF with over 80 meters working distance in open space. It is a 16 x 10 x 2.2 mm board which contains GPIO, SPI, UART, I2C, I2S, PWM and ADC interfaces for connecting peripherals and sensors.

nrf52832_mediumThe nRF52832 SoC is built around a 32-bit ARM® Cortex™-M4F CPU with 512kB and 64kB RAM. The embedded 2.4GHz transceiver supports Bluetooth low energy, ANT and proprietary 2.4 GHz protocol stack. It is on air compatible with the nRF51 Series, nRF24L and nRF24AP Series products from Nordic Semiconductor.

MDBT42Q Specifications:

  • Multi-protocol 2.4GHz radio
  • 32-bit ARM Cortex – M4F processor
  • 512KB flash programmed memory and 64KB RAM
  • Software stacks available as downloads
  • Application development independent from protocol stack
  • On-air compatible with nRF51, nRF24AP and nRF24L series
  • Programmable output power from +4dBm to -20dBm
  • RAM mapped FIFOs using EasyDMA
  • Dynamic on-air payload length up to 256 bytes
  • Flexible and configurable 32 pin GPIO
  • Simple ON / OFF global power mode
  • Full set of digital interface all with Easy DMA including:
  • 3 x Hardware SPI master ; 3 x Hardware SPI slave
  • 2 x two-wire master ; 2 x two-wire slave
  • 1 x UART (CTS / RTS)
  • PDM for digital microphone
  • I2S for audio
  • 12-bit / 200KSPS ADC
  • 128-bit AES ECB / CCM / AAR co-processor
  • Lowe cost external crystal 32MHz ± 40ppm for Bluetooth ; ± 50ppm for ANT Plus
  • Lowe power 32MHz crystal and RC oscillators
  • Wide supply voltage range 1.7V to 3.6V
  • On-chip DC/DC buck converter
  • Individual power management for all peripherals
  • Timer counter
  • 3 x 24-bit RTC
  • NFC-A tag interface for OOB pairing
  • RoHS and REACH compliant

pcb

This BLE module can be used in a wide range of applications, such as Internet of Things (IoT), Personal Area Networks, Interactive entertainment devices, Beacons, A4WP wireless chargers and devices, Remote control toys, and computer peripherals and I/O devices.

Full specifications, datasheet, and product documents are available at seeedstudio store, it can be backordered for only $10.

FiPy, The Future IoT Module

The hardware startup Pycom have been working hard to create a fast-develop-and-connect hardware portfolio, a portal and gathered enough developer manpower to unleash the IoT growth potential. Pycom has just launched its newest product: FiPy!

301c48d603db267c9025d14e206c1b09_original

FiPy is the new IoT module that connects your device to other networks. According to what the company describes, it is the most comprehensive solution, unifying LTE with other proprietary or unlicensed LPWA technologies into a single, five-network IoT connectivity solution.

2c0702a7a39b0313f7b08f94c202b7e2_original

“In addition to WiFi, BLE, LoRa and Sigfox, we’ve added the latest cellular technology for IoT: LTE-M. But, we didn’t just go for one frequency type either. Nope, we partnered with the leaders in their field, Sequans, and are now proud to confirm that our module will have both CAT NB1 and CAT M1.”

The board specifications

  • ESP32-based – Espressif ESP32 SoC
  • Dual processor and WiFi+Bluetooth radio system on chip
  • Supports 5 networks: WiFi, BLE, cellular LTE-CATM1/M2(NBIoT), LoRa, and Sigfox
  • RTC running @ 32KHz
  • Size: 55 x 20 x 3.5 mm
  • Micropython enabled
  • Pymakr and Pymate compatible
  • All your apps from WiPy, LoPy and SiPy will work on FiPy too
  • Open source firmware

Pycom is redefining IoT with this brand new module! FiPy gives access to all the world’s LPWAN networks on one tiny board. It is now live on Kickstarter, check the campaign video:

You can pre-order your FiPy now for $39, the campaign still has 23 days to go and it has already achieved double of its goal. More information about FiPy plus its sensors and accessories check the crowdfunding campaign and the official website.