Tag Archives: Bluetooth

Pixl.js – The Latest Addition to the Espruino Family

Espruino is a small computer that anyone can use to control things around it. Its JavaScript interpreter gives you instant feedback so that you can experiment and develop whatever your level of experience. Even if you can’t program, you can still get started quickly with the web-based graphical code editor! The Espruino family started with one board that promised so much potential after the first launch of the Espuiro Original, their first board but have seen grow from the original to several other boards like the Pico, Puck.js and the latest addition is the Pixl.js.

The Pixl.js Board
The Pixl.js Board

Espruino boards have known famously for their ability to be programmed with Javascript. They are described as the Board for the Web, codename Javascript for the Things. The new Pixl.js brings a new approach to the Espruino boards with the introduction of a small LCD, unlike its earlier predecessors which can be handy for playing some simple games.

Pixl.js Showing the Chrome T-Rex Game
Pixl.js Showing the Chrome T-Rex Game

The Pixl.js is a Bluetooth LE device with a connected display and is based around the Nordic Semiconductor nRF42832 SoC. The nRF52832 SoC is a powerful, highly flexible ultra-low power multiprotocol SoC. The nRF52832 SoC is built around a 32-bit ARM® Cortex™-M4F CPU with 512kB + 64kB RAM. The embedded 2.4GHz transceiver supports Bluetooth Low Energy, ANT, and proprietary 2.4 GHz protocol stack.

The Pixl.js can talk and control other Bluetooth LE devices making it a good option for mesh networking applications. It can act as a wireless display, a conference badge, or as a notification message console. The board measures about 60mm × 53mm × 15mm and the LCD is a 128×64-pixel monochrome display that features a white backlight. The board is very power friendly and can be powered from an attached micro USB connector and a CR2032 coin cell battery which can give it a whopping 20-day life of juice.

The Pixl.js board comes with some similar Arduino footprint. It has a standard Arduino GPIO header beneath it making it able to interface with existing Arduino shields. The board packs a lot of features and doesn’t even require a driver when plugged into a computer.

Pixl.js with an Arduino headers footprint.

Below are some of the features of the Pixl.js:

  • Bluetooth Low Energy
  • Espruino JavaScript interpreter pre-installed
  • nRF52832 SoC – 64MHz ARM Cortex M4, 64kB RAM, 512kB Flash
  • 54mm diagonal, 128 x 64 Sunlight readable monochrome display with white backlight
  • 20x GPIO in Arduino footprint (capable of PWM, SPI, I2C, UART, Analog Input)
  • Support for GSM, LTE, WiFi and Ethernet Arduino shields
  • 3v to 16v input range
  • CR2032 battery holder (20 days battery life with LCD on), or Micro USB (power only)
  • 4x 3mm mounting holes
  • 4x Buttons
  • Built in thermometer and battery level sensors
  • NFC tag programmable from JavaScript
  • Dimensions: 60mm x 53mm x 15mm

The Pixl.js board is available for purchase for £36.00 from the Espruino Store, and example tutorials are available on the Espruino site.

New Wireless VAR-SOM-MX6 Adds Supports For i.MX6 QuadPlus SoC

Variscite a leading SOC manufacturer from Israel, has released a new version of its wireless-enabled “VAR-SOM-MX6” module. It adds support for the i.MX6 QuadPlus SoC. Variscite is renovating the old COM once again with a model that adds support for NXP’s QuadPlus. It is going to be a new addition to the i.MX6 Solo, DualLite, Dual, and Quad versions. The module runs Linux 4.9.11 and Android 8.0 (Oreo).

VAR-SOM-MX6 module with QuadPlus support
VAR-SOM-MX6 module with QuadPlus support

The i.MX6 QuadPlus, which is also available on the Wandboard Reload SBCs, iWave’s i.MX6 COMs, and other boards. It has the same, 1.2GHz quad-core CPU as the Quad, but offers an enhanced Vivante GC2000+ GPU with 50 percent elevated graphics performance. The SoC also provides HD-resolution H.264 decode and encode.

The 2018 version of the VAR-SOM-MX6 is identical with the pin configuration as the earlier models. It has up to 4GB DDR3 RAM and data storage of 4GB to 64GB via eMMC and 128MB to 1GB NAND flash. There’s a GbE controller, although with the usual i.MX6 bandwidth limits. The 802.11n WiFi, which is accompanied by Bluetooth 4.1 with BLE, is available with optional 2×2 MIMO.

The 67.8 x 51.7mm module houses dual 24-bit LVDS interfaces with resistive touch, as well as an HDMI and DSI interfaces. The long list of peripherals includes dual CAN, SATA, PCIe, MIPI-CSI, and much more support. The module has a range of -40 to 85°C working temperatures.

VAR-SOM-MX6 eval kits

VAR-SOM-MX6 Development Kit
VAR-SOM-MX6 Development Kit

The $399 VAR-SOM-MX6 Starter Kit includes the carrier board with the VAR-SOM-MX6 module, an antenna, a debug cable, a microSD card, and a carrier board design package. The $499 Development Kit version adds a 12V power supply, an Ethernet cable, and a 7-inch resistive touch panel. The $549 Development Kit Pro advances to a 7-inch capacitive touchscreen.

The VAR-SOM-MX6 module with QuadPlus support is available now starting at $52 per unit in volume. The development kits start at $399. More information may be found in Variscite’s VAR-SOM-MX6 with the QuadPlus announcement and product page.

Voxos – A Glass That Allows Listening With Your Bones

In the last few years, we have seen an increasing interest in smart glasses. Some analysts believe that in the next few years, smart glasses will be at the center of consumer and business electronics in the same way that smartphones are today. Companies and Startups like Google, Intel, Vue, Vuzix, and many others have all come up with their smart glass initiative, and even Apple has many smart-glasses patents with possibly over hundreds of engineers working on that field. One of the challenges that come with smart glasses is that they usually don’t always look socially acceptable, and most are always geeky like. Voxos is hoping to change that, by building a smart glass that looks like every-day regular glass.

Voxos Smart Glass

Voxos on the surface looks like your typical eyeglasses, but there is more to it. Voxos is a smart glass that allows to listen to music without actually plugging in an earphone or headset. The smartness in Voxos comes from its built-in bone conduction technologyBone conduction uses the natural vibrations of a person’s bones — such as skull, jaw, and cheekbones — to hear a sound. So, the bone conduction technology works by vibrating sound through your skull opposed to straight into your ear like standard earphones. This means you can hear your environment while listening to Music, Podcasts, Map Navigation, Audio Assistant, Google Maps, Audiobooks, Fitness Apps and more at all times without being disconnected from their surroundings.

Friedrich Nietzsche once said, “Without music, life would be a mistake.” Technological advances in mobile technology and improved data streaming have increased access to on-demand streaming music. The number of paying subscribers has highly increased in the last five years. Music lovers are gearing up for better musical experience going for high-quality headphones, noise-canceling headphones, and earplugs. These accessories are becoming more common while offering an all-encompassing musical experience but this might be coming at an extreme price—and that price just might cost one their life. Studies have shown that a number of accidents involving pedestrians wearing headphones are on the rise. Aside from potential accidents that could be caused by putting on an earphone, another concern is ear-infection causing germs from sharing ear-phones or from not changing the headphone sponges. Voxos, on the other hand, has less of these concerns. Voxos takes bone conduction to the next level and creates the safe and convenient alternative to ear plugin headsets, especially for outdoor activities.

Voxos Smart Glass Parts

Voxos are designed to be worn during extensively long periods, and they can last a whopping 10 hours of active playing. Voxos connects to your smartphone via Bluetooth and works with most apps. Voxos is integrated with a touchpad on the right side and will allow the user to interact with the main function of the phone by just swiping or tapping the glass. It also comes with a USB interface for charging the inbuilt battery and two buttons for parring mode, volume up, and volume down activity.

With it’s generic and sporty look Voxos fits with every outfit and it’s waterproof. The perfect fit makes wearing it not only fashionable but also convenient. Voxos is indeed great for drivers, but it is also perfect for others, such as cyclists, pedestrians and anybody on the road!

Even though the bone conducting technology in Voxos is already existing in some other smart glasses, we expect in the near future that Smart glasses will improve to the point of becoming mainstream in both everyday life and in the enterprise. And the direction for smart glasses is already being set in leading-edge smartphones like Apple’s iPhone X.

Voxos smart glasses are currently not available, but you can sign up on the company’s website to know when it will be available and even get a 40% off your purchase. Voxos is expected to launch an Indiegogo campaign very soon and possibly a Kickstarter one as well.

UPDATE 07/05/2018: They just launched an exclusive pre-campaign on Indiegogo where they have a special discount only for a few days.

InnoComm NXP i.MX8M System on Module – An Advanced Video Processing SoM with Connectivity

Last year (2017), NXP announced its new applications processors, the i.MX 8 series. The i.MX 8M family of applications processors based on Arm® Cortex®-A53 and Cortex-M4 cores provide industry-leading audio, voice and video processing for applications that scale from consumer home audio to industrial building automation and mobile computers. NXP announced a select group of partners that have been engaged in the development of an ecosystem for the i.MX 8M family processor. Taiwan based Innocomm Mobile Technology was one of those selected partners among others and have announced their NXP i.MX 8M quad-core system-on-module – called WB10 with wireless and wired connectivity options.

Innocomm WB10

Innocomm WB10 is a next generation Wireless System-on-Module powered by the NXP i.MX 8M SoC. It offered advanced video processing capabilities and designed for application in the areas of internet audio, home entertainment, smart speakers among many others. With inbuilt Wi-Fi, Bluetooth and Ethernet connectivity options, the WB10 can quickly find applications in the trending areas of Internet of Things (IoT) and Industrial applications.

The WB10 is a small module and measured at just 50 x 50 mm. The WB10 module comes with only 2GB LPDDR4 RAM and an 8GB eMMC flash memory. It provides onboard support for WiFi 802.11 a/b/g/n/ac, Ethernet controller with MIMO 2 x 2 and Bluetooth 4.2. Apart from impressive connectivity options, you also get a host of other interfaces like – USB 3.0 host, USB 2.0 device, 2x I2C, 3x UART, GPIO, PWM, SPI, and PCIe interfaces.

WB10 Block Diagram

The WB10 has an impressive audio and video interfaces with is Media I/O expressed via three 80-pin connectors that include an HDMI 2.0a supporting 4K and HDR, as well as MIPI-DSI, 2x MIPI-CSI, SPDIF Rx/Tx, 4x SAI, and the high-end DSD512 audio interface.

The following are some of the SoM specifications:

  • Processor – NXP i.MX8M Quad, Cortex-A53 x 4 + M4
  • Display  –
    • 4K + HDR
    • HDMI 2.0a
    • MPI DSI
  • RAM – 2GB LPDDR4
  • Flash Memory – 8GB eMMC Flash
  • Connectivity –
    • Wi-Fi 802.11 a/b/g/n/ac
    • MIMO 2×2 / BT 4.2
    • Ethernet 10/100M/1Gbps
  • Audio –
    • SAI
    • SPDiF Rx/Tx
    • DSD512
  • Dimension – 50 x 50 mm
  • Others –
    • USB 3.0/2.0 Host
    • USB 2.0 Device
    • i2C
    • SPI
    • UART
    • GPIO
    • CSI
    • PWM
    • PCIe
    • 80 pins x 3, board to board connectors
Carrier Board

Although no official software support has been provided, it is expected the SoM should support the usual Android and Linux BSPs as seen in most modules. A development carrier board is made available by the company to extend the SoM interfaces and will surely make development easier. The module connects to the carrier board through three 80-pin board-to-board connectors exposing many of the I/Os provided by the latest NXP processor.

At this point, no pricing or availability information is provided for the WB10. More information about the module can be found on the product page.

Solid State Supplies offers world’s smallest Bluetooth® Low Energy (BLE) module

Acknowledged as the UK’s leading source of advanced embedded technology, Solid State Supplies Ltd. now offers the world’s smallest Bluetooth® Low Energy (BLE) SiP module from Silicon Labs. With a package size of 6.5mm x 6.5mm x 1.4mm the BGM11S Blue Gecko SiP (System in Package) module targets applications where ultra-small size, reliable high performance RF, low power consumption, full modular certification and easy application development are key requirements.

This highly integrated SiP solution is a complete Bluetooth subsystem with on-board radio transceiver, antenna, serial interfaces, core processor, memory, clock management, I/O, timers, triggers, hardware security and power management. (more…)

Fujitsu Electronics Europe expands its Bluetooth Low Energy portfolio

Adding components from Ambiq Micro and Talent Highland, Fujitsu Electronics Europe has increased its Bluetooth Low Energy portfolio.

The additional products offer customers high integration, low power consumption and flexibility, says Fujitsu Electronics Europe (FEE), and it has produced the ClickBeetle reference platform (pictured) to facilitate the integration of Bluetooth Low Energy products into applications.

Ambiq Micro’s Bluetooth Low Energy components make Bluetooth Low Energy applications more powerful and efficient, claims FEE. The Cortex M4 in Apollo 2 operates at up to 48MHz at only 10-microA/MHz with a deep-sleep current of two micro A. Apollo 1 operates at up to 24MHz at 34-micro A/MHz and has a deep-sleep current of 143-nanoA. Additional components offer the possibility of lowering the deep-sleep current to 22-nanoA. Depending on the requirements, Ambiq Micro offers different bundle packages to combine its Apollo 1 and Apollo 2 microcontrollers or real time clocks with an EM9304 BLE communication chip. Combinations of microcontroller and Bluetooth Low Energy chips are suitable for high-performance applications, while combinations of real time clocks and Bluetooth Low Energy are ideal for cost-sensitive Bluetooth Low Energy beacons. Packages range from BGA, CSP and QFN packages. For very small applications, Ambiq Micro also offers a SoC that combines the Apollo 2 microcontroller and EM9304 BLE in a 4.0 x 4.0mm LGA package with 64 pins.

Customers who would like to integrate Bluetooth Low Energy further can also use a Talent Highland SIP. Components such as a DA14580 with ARM Cortex M0 16 MHz and 42kbyte RAM, 1Mbit SPI flash, crystals, passive components and antenna are bundled in a package measuring only 7.0 x 7.0mm. Thanks to the internal DC/DC converter, the small module also supports three and 1.5V batteries. Depending on the requirements, FEE customers can also create their own package with their own components.

FEE offers its reference platform, ClickBeetle, for application-oriented evaluation and development. It measures just 16 x 26mm and uses a hardware-independent fixed pin layout, making it easy to replace and evaluate Bluetooth Low Energy components, says Fujitsu.

http://www.fujitsu.com/feeu/

Arduino Communication with an Android App via Bluetooth

With the arrival of the IoT and the need for control, devices now need to do more than perform the basic functions for which they are built, they need to be capable of communicating with other devices like a mobile phone among others. There are different communication systems which can be adapted for communication between devices, they include systems like WiFi, RF, Bluetooth among several others. Our focus will be on communication over Bluetooth.

Today we will be building an Arduino based project which communicates with an app running on a smartphone (Android) via Bluetooth.

Arduino Communication with an Android App via Bluetooth – [Link]

Particle Mesh – A Mesh-Enabled IoT Development Kits.

Particle, which has been known for its collection of  IoT focused development boards, and its Internet of Things (IoT) platform (Particle Cloud) has launched a new set of mesh network-enabled IoT development kits called Particle Mesh. Particle Mesh is expected to provide developers more insight into implementing mesh networking technology. They help to collect sensor data, exchange local messages, and share their connection to the cloud.

Particle Mesh Hardware
Particle Mesh Hardware

Particle Mesh features a new family of mesh-ready devices with Wi-Fi, BLE and LTE connectivity and also integrated with the Particle device cloud. Particle mesh consists of three main boards: The Argon, The Boron, and the Xenon. Each of these Particle Mesh boards has at least one form of outside connectivity option (LTE/3G/2G, Wi-Fi or Bluetooth) and an onboard mesh network hardware to facilitate setting up a mesh network for local communications between sensors and other particle mesh boards. All three devices are built around the Nordic nRF52840 MCU + BLE + mesh radio and follow the Adafruit Feather specification making it compatible with most Adafruit FeatherWing hardware accessories. (more…)

Espressif ESP32-PICO-KIT WiFi/WLAN+Bluetooth Module

ESP32-PICO-KIT V4 is a mini development board produced by Espressif. At the core of this board is the ESP32-PICO-D4, a System-in-Package (SIP) module with complete Wi-Fi and Bluetooth functionalities. Comparing to other ESP32 chips, the ESP32-PICO-D4 integrates several peripheral components in one single package, that otherwise would need to be installed separately. This includes a 40 MHz crystal oscillator, 4 MB flash, filter capacitors and RF matching links in. This greatly reduces quantity and costs of additional components, subsequent assembly and testing cost, as well as overall product complexity.

Espressif ESP32-PICO-KIT WiFi/WLAN+Bluetooth Module – [Link]

HeartyPatch – Open source ECG patch with Wifi

An ECG patch with HRV monitoring that’s open source, affordable, and Wi-Fi/Bluetooth connected.

HeartyPatch is a completely open source, single-lead, ECG-HR wearable patch with HRV (Heart Rate Variability) analysis. It is based on the popular ESP32 system-on-a-chip. By using low-cost, highly-integrated components, we are able to keep the BOM’s cost low, while the simplicity of the circuit design means future expansion will be easier. HeartyPatch can be used both as a lifestyle device for managing fitness and stress as well as for diagnostics and medical research, with the potential for even more interesting applications.

HeartyPatch – Open source ECG patch with Wifi – [Link]