Tag Archives: boost

TPS61092 Boost Converter on Test Bench

luckyresistor.me tests his TPS61092 boost converter with a thermal camera and shares the results.

For my current project I searched for a good boost power converter which is able to deliver continuous 400mA power for various sensors.

There are an endless number of good boost converters around, but not many can be hand soldered to a board. I would really like to see some like the TPS61092 with SOIC or similar packages. The biggest problem seems to be the heat transport, why most chips have to be mounted flat on the board.

TPS61092 Boost Converter on Test Bench – [Link]

150VIN & VOUT Synchronous 4-Switch Buck-Boost Controller with Integrated Switching Bias Supply

Analog Devices announces the Power by Linear™ LTC3777, a 150V high efficiency (up to 99%) 4-switch synchronous buck-boost DC/DC controller, which operates from input voltages above, below or equal to the regulated output voltage. Its 4.5V to 150V input voltage range operates from a high input voltage source or from an input that has high voltage surges, eliminating the need for external surge suppression devices, ideal for transportation, industrial and medical applications.

To prevent high on-chip power dissipation in high input voltage applications, the LTC3777 integrates a low quiescent current high efficiency switching bias supply for its internal power consumption. The output voltage of the LTC3777 can be set from 1.2V to 150V at output currents up to tens of amps, depending on the choice of external components. Output power up to 500W can be delivered with a single device. Higher powers can be achieved when multiple circuits are configured in parallel. The LTC3777’s powerful 1.5Ω N-channel MOSFET gate drivers can be adjusted from 6V to 10V, enabling the use of logic-level or standard-threshold MOSFETs.

The LTC3777 employs a proprietary current mode control architecture for constant frequency in buck, boost or buck-boost modes. The operating frequency can be synchronized to an external clock from 50kHz to 600kHz, while an input/output constant current loop provides support for battery charging and overload protection. The user can select either forced continuous mode or discontinuous mode to maximize light load efficiency. Additional features include seamless transfers between operating regions, a power good output voltage monitor, adjustable soft-start and input overvoltage lockout, and output voltage disconnect during shutdown.

The LTC3777 is available in a 48-lead e-LQFP package with pin skipping for high voltage spacing. Extended and industrial versions are available from –40 to 125°C.

Summary of Features: LTC3777

  • 4-Switch Synchronous Current Mode Buck-Boost Architecture
  • Operation with Input Voltages Above, Below or Equal to the Output Voltage
  • 4.5V to 150V Input Voltage Range
  • 1.2V to 150V Output Voltage Range
  • Up to 99% Efficiency
  • Integrated Switching Bias Supply
  • Input or Output Average Current Limit
  • Adjustable 6V to 10V MOSFET Gate Drivers
  • Compatible with Logic-Level or Standard-Threshold NMOS
  • 500 Watts Output Power Capable with a Single Device
  • Fixed Synchronizable Operating Frequency from 50kHz to 600kHz
  • Output Voltage Disconnect from VIN During Shutdown
  • Adjustable Soft-Start
  • ±1% Reference Voltage Accuracy over -40°C to 125°C
  • 48-Lead e-LQFP Package with High Voltage Pin Skipping

[source]

USB To 12V Boost Converter

This project provides 12V output from any USB power source, like PC USB port, USB adapter or power banks. LM2577ADJ boost converter IC is the heart of the project. The IC can handle load up to 800mA, it’s advisable to use only 200mA load on output to be on the safe side. The LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), fly back, and forward converter switching regulators. The device is available in three different output voltage versions: 12V, 15V, and adjustable. Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and fly back transformers designed to work with these switching regulators. Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and under voltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

USB To 12V Boost Converter – [Link]

2 X AA Battery To 6V Boost Converter For Arduino Nano

This project is simple solution to power Arduino Nano from two 1.5V batteries. Circuit converts 2 X AA alkaline battery power into 6V 100mA using boost topology. Circuit uses SOT223-6 pin TLV61046A boost converter IC. The TLV61046A is a highly integrated boost converter designed for applications such as PMOLED panel, LCD bias supply and sensor module. The TLV61046A integrates a 30-V power switch, an input to output isolation switch, and a rectifier diode. It can output up to 28 V from input of a Li+ battery or two alkaline batteries in series. The TLV61046A operates with a switching frequency at 1.0 MHz. This allows the use of small external components. The TLV61046A has typical 980-mA switch current limit. It has 7-ms built-in soft start time to reduce the inrush current. The TLV61046A also implements output short circuit protection, output over-voltage protection and thermal shutdown. R1 and R2 connected to FB pin to set the output voltage 6V. R1 and R2 can be altered to set higher output voltage, refer data sheet for calculation. The board can be used as Arduino Nano shield or as stand-alone boost converter. It directly fits on top of the Arduino Nano and output is connected to VIN and GND pins of Nano.

2 X AA Battery To 6V Boost Converter For Arduino Nano – [Link]

LT8362 – Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch

The LT8362 is a current mode, 2MHz step-up DC/DC converter with an internal 2A, 60V switch. It operates from an input voltage range of 2.8V to 60V, suitable for applications with input sources ranging from a single-cell Li-Ion battery to automotive and industrial inputs. The LT8362 can be configured as either a boost, SEPIC or an inverting converter. Its switching frequency can be programmed between 300kHz and 2MHz, enabling designers to minimize external component sizes and avoid critical frequency bands, such as AM radio. Furthermore, it offers over 90% efficiency while switching at 2MHz. Burst Mode operation reduces quiescent current to only 9μA while keeping output ripple below 15mVP-P. The combination of a 3mm x 3mm DFN or high voltage MSOP-16E package and tiny externals ensures a highly compact footprint while minimizing solution cost.

LT8362 – Low IQ Boost/SEPIC/Inverting Converter with 2A, 60V Switch – [Link]

Boost Converters and Buck Converters: Power Electronics

Boost Converters and Buck Converters: Power Electronics  – [Link]

5V to 12V @400mA Boost Converter

The circuit presented here is about a boost converter based on LM2698. It is a PWM boost converter from Texas instruments. LM2698 can also be used as a flyback converter. The current mode architecture is a special feature of LM2698, which provides superior line and load regulation. This circuit is capable of a supplying a output voltage of 12V for a input range of 4.5V to 5.5V.

Specifications

  • Input voltage: 4.5VDC to 5.5VDC
  • Output voltage: 12VDC
  • Output current: 0.4A
  • PCB:45mm X 30mm

5V to 12V @400mA Boost Converter – [Link]

Multiphase, 60V synchronous boost controller peaks at 97%

LTC3897 is a multiphase synchronous boost DC/DC controller with input surge stopper and ideal-diode controller. The boost controller drives two N-channel power MOSFET stages out-of-phase to reduce input and output capacitor requirements, enabling the use of smaller inductors versus the single-phase equivalent. By Graham Prophet @ edn-europe.com:

Synchronous rectification increases efficiency, reduces power loss and eases thermal requirements. The input surge stopper, with adjustable clamp voltage, controls the gate of an external N-channel MOSFET to protect against high input voltage transients of greater than 100V and provides inrush current control, overcurrent protection and output disconnect. The integrated ideal diode controller drives another N-channel MOSFET for reverse input voltage protection and voltage holdup or peak detection.

12V to 24V 1A DC-DC Boost Converter using LM2588

12V To 24V Booster is based on LM2588 IC from Texas Instruments. The LM2588 regulator integrated circuit specifically designed for fly-back, step-up (Boost) , and forward converter. The board provides 24V DC 1A DC output, Input 8V to 16V DC. Board has minimum components, screw terminal provided for input & outputs.

Features

  • Supply Input 8V To 16V DC ( Ideal 12V DC)
  • Output 24V 1A

12V to 24V 1A DC-DC Boost Converter using LM2588 – [Link]

LT8390 – 60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum

insider79-feature-image

The LT8390, is a synchronous buck-boost DC/DC controller that can regulate output voltage, and input or output current from input voltages above, below and equal to the output voltage. Its 4V to 60V input voltage range and 0V to 60V output voltage range are ideal for voltage regulator, battery and supercap charger applications in automotive, industrial, telecom and even battery-powered systems. The LT8390’s 4-switch buck-boost controller, combined with 4 external N-channel MOSFETs, can deliver from 10W to over 400W of power with efficiencies up to 98%. Its buck-boost capability is ideal for applications such as automotive, where the input voltage can vary dramatically during stop/start, cold crank and load dump conditions. Transitions between buck, buck-boost and boost operating modes are seamless, offering a well regulated output even with wide variations of supply voltage. The LT8390 is offered in either a 28-lead 4mm x 5mm QFN or thermally enhanced TSSOP to provide a very compact solution footprint. [source]

LT8390 – 60V Synchronous 4-Switch Buck-Boost Controller with Spread Spectrum – [Link]