Tag Archives: Buck

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath

3106

Linear Technology announces the LTC3106, a highly integrated, 1.6µA quiescent current 300mV start-up buck-boost DC/DC converter with PowerPath™ management, optimized for multisource, low power systems. The LTC3106 is ideal for powering low power wireless sensors from rechargeable or primary batteries supplemented by energy harvesting. The LTC3106 incorporates maximum power point control (MPPC) making it compatible with common high impedance power sources, including photovoltaic cells, thermoelectric generators (TEGs) and fuel cells.

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath – [Link]

LTC3106 – 300mA Low Voltage Buck-Boost Converter

3106

The LTC3106 is a highly integrated, 1.6μA quiescent current 300mV startup buck-boost DC/DC converter with PowerPath management, optimized for multisource, low power systems. The LTC3106 is ideal for powering low power wireless sensors from rechargeable or primary batteries supplemented by energy harvesting. If the primary power source is unavailable, the LTC3106 seamlessly switches to the backup power source. The LTC3106 is compatible with either rechargeable or primary cell batteries and can trickle charge a backup battery whenever there is an energy surplus available.The LTC3106 provides 300mA steady state and 650mA peak load current at up to 92% efficiency.

LTC3106 – 300mA Low Voltage Buck-Boost Converter – [Link]

Single Regulator contains buck and boost controllers

7812

Linear Technology Corporation introduces the LTC7812, a dual output (boost + buck), low quiescent current synchronous DC/DC controller. When cascaded, its independent step-up (boost) and step-down (buck) controllers regulate the output voltage from an input voltage that can be above, below or equal to the output voltage, maintaining output regulation during cold crank and load dump conditions. Unlike conventional single inductor buck-boost regulators, the LTC7812’s cascaded boost + buck solution provides fast transient response with continuous, non-pulsating, input and output currents, substantially reducing ripple voltage and electromagnetic interference (EMI), making it ideal for automotive, industrial and high power battery operated systems.

Single Regulator contains buck and boost controllers – [Link]

SOS webinar – Simple and efficient solution for wide voltage range applications

image_gallery

LINEAR TECHNOLOGY
Term: 2015.11.25 10:00 – 11:30 CET

Learn more about available topologies for input voltage higher and lower from output level. Focus on the most efficient way to convert power in four-switch buck-boost topology.

  • available topologies of Vin min < Vout < Vin max and differences between them
  • four-switch buck-boost topology as the most efficient, flexible and the smallest solution
  • buck-boost solutions from Linear Technology, applied to real end-devices
  • Diskusia

SOS webinar – Simple and efficient solution for wide voltage range applications – [Link]

How to control LM2596 buck-converter with microcontroller

by hugatry @ hackvlog.com:

Every now and then someone asks on different forums if there is an way to control cheap LM2596 modules with an Arduino or another microcontroller. I decided to demonstrate one solution that might be basic electronics for some, but still many don’t know about.

Those buck converters will change the output voltage to make the feedback pin, connected to the output via a voltage divider, become 1.25V or so. If feedback is higher, output gets lower and vice versa. If one changes the ratio of resistors in voltage divider, output voltage will change. This is usually done by turning a trimmer resistor with a screwdriver. That is good enough for many applications where voltage will be set only once, but sometimes there is a need to adjust the output voltage more frequently.

How to control LM2596 buck-converter with microcontroller – [Link]

Buck-boost regulator achieves high efficiency

226094

by Susan Nordyk @ edn.com:

Using adaptive current-limit PFM (pulse frequency modulation) control, the ISL9120 switching regulator from Intersil realizes efficiencies of up to 98%, while automatically transitioning between buck and boost modes without significant output disturbance. The part accommodates a wide input voltage range of 1.8 V to 5.5 V and has an adjustable output voltage range of 1 V to 5.2 V for use with multiple power rails. It is capable of delivering up to 800 mA of output current (VIN = 2.5 V, VOUT = 3.3 V).

Buck-boost regulator achieves high efficiency – [Link]

Buck converter is pin-programmable

MIC24046H TYPICAL APPLICATION_FRONT PAGE

by Susan Nordyk @ edn.com:

Housed in a tiny 3×3-mm QFN package, the MIC24046-H synchronous step-down regulator from Micrel offers efficiency of greater than 90% peak and pin-selectable output voltage, switching frequency, and current limit. A wide input voltage range of 4.5 V to 19 V makes the part useful for distributed 12-V point-of-load applications.

The switching frequency of the MIC24046-H can be programmed to one of three options: 400 kHz, 565 kHz, or 790 kHz. Programmable output-voltage choices include 0.7 V, 0.8 V, 0.9 V, 1.0 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V, while an internal divider is used to achieve ±1% voltage-output accuracy. The current limit of the regulator can be programmed to 3 A, 4 A, or 5 A.

Buck converter is pin-programmable – [Link]

A low-cost 0.5A 33V LED driver module with 90+% efficiency

LG-LED-150702-DF-Futuro Low-cost LED driver Design FigA

by Valentin Kulikov @ edn.com

This article describes simple constant current driver module with fast PWM input that can be used for driving medium and high power LEDs. The module uses an integrated constant-current output, DC-DC buck converter with output current configurable from 0.1 to 0.5A. This article outlines the schematic, design guidelines, operation, and performance of the low cost LED driver.

A low-cost 0.5A 33V LED driver module with 90+% efficiency – [Link]

600 mA Constant On-Time Buck Regulator

600-mA-Constant-On-Time-Buck-Regulator-1432517217

The LM5017 is a 600 mA constant on-time synchronous buck regulator with built-in high side and low side MOSFETs. This device has a wide input voltage range from 7. 5 V to 100 V. The constant on-time control scheme used in this device doesn’t need loop compensation, delivers excellent transient response, and enables very high step-down ratios. The on-time varies inversely with the input voltage resulting in nearly constant frequency over the input voltage range. A high voltage startup regulator provides bias power for internal operation of the IC and for integrated gate drivers.

600 mA Constant On-Time Buck Regulator – [Link]

Buck Converter (DC-DC)

FB5YW1RI9SMRLAI.MEDIUM

by xKOBAYASHIMARUx @ instructables.com:

Buck Converters are great! I use them all over the place in many of my nerdy, techy, geeky hobbiest projects. They also can commonly be referred to by other names, a DC-DC converter or a switching regulator. Essentially what it does is take some higher voltage in (higher than what you want for your project), chops it up, and pieces together a lower voltage. It might help to think of it as a transformer for DC circuits… only without the giant iron block… and without the long coils of wire… and with only 3 pins.

Buck Converter (DC-DC) – [Link]