Tag Archives: Capacitor

LTC3643 – 2A Bidirectional Power Backup Supply

3643

Linear Technology Corporation introduces the LTC3643, a bidirectional, high voltage boost capacitor charger that automatically converts to a buck regulator for system backup. The proprietary, single-inductor topology with integrated PowerPath™ functionality does the work of two separate switching regulators, reducing size, cost and complexity. The LTC3643 operates in two modes – boost charge mode and buck backup mode. The charging mode efficiently charges an electrolytic capacitor array up to 40V with an internal switch current rating of 2A from an input supply between 3V to 17V. In backup mode, when the input supply falls below the programmable power-fail (PFI) threshold, the step-up charger operates in reverse as a synchronous step-down regulator to power and hold up the system rail from the backup capacitor. During backup, the current limit can be programmed from 2A to 4A, making this device ideal for high energy, relatively short duration backup capacitor systems, power failure backup systems, solid-state drives and battery stack charging applications.

LTC3643 – 2A Bidirectional Power Backup Supply – [Link]

Component Tester FISH 8840 Review

Component_Tester_FISH8840_9494

Alan Parekh @ hackedgadgets.com has a review of a cheap component tested he found on ebay. This device can test bipolar transistors, MOSFET, diodes, thyristors, resistors and capacitors. He writes:

This is an inexpensive component tester called the FISH 8840 which you can find from many online eBay retailers for around $30. The interface is very simple, attach a device to be tested and press the test button. It turns off after about 20 seconds, pressing the off button puts it into sleep mode immediately. There is a ZIF socket that allows you to insert leaded devices and pads that allow you to press SMD devices directly onto the tester.

Component Tester FISH 8840 Review – [Link]

OpenCVMeter – Rediscover Your Capacitors

OpenCVMeter

OpenCVMeter is an open source tool to measure capacitance and leakage current as a function of a capacitor’s working voltage.

When designing circuits, many hobbyists take capacitors for granted – but each type (ceramic multi-layer, aluminum electrolytic, tantalum, mica…) has its own unique properties. Nowadays, ceramic capacitors are the most commonly used capacitors in the industry, but many can lose up to 80% of their rated capacitance near their voltage ratings.

Enter the OpenCVMeter! This meter aims to provide a Capacitance versus Voltage characterization accurate within 1% of the capacitors for your next project (or already have and are starting to wonder about right now…)

OpenCVMeter – Rediscover Your Capacitors – [Link]

Not a battery, not a cap: Murata’s small energy [storage] device

151001edne-murata-umac_pr_rev1.3

by Graham Prophet @ edn-europe.com:

To meet what the company sees as a gap in the available range of energy storage solutions, Murata has developed the UMAC, a small, high-capacity cylinder-type energy device for use in wearable and wireless sensor applications. Although lithium-ion based, Murata differentiates it from a battery.

The UMAC is a miniature device with a high energy storage capacity, low internal resistance, fast charging and discharging and the ability to withstand load fluctuations. It may be used as a secondary battery in the same way as a capacitor. The UMAC achieves better charge/discharge characteristics and has an extended cycle life superior to conventional batteries. Suited for use as a power supply for wearable devices or sensor nodes for wireless sensor networks, the UMAC maintains flat voltage characteristics while accommodating a wide range of load characteristics.

Not a battery, not a cap: Murata’s small energy [storage] device – [Link]

Measure Capacitance with Arduino

FXGPAOHIBWHE68V.MEDIUM

by Maximous @ instructables.com:

This tutorial provides a guide on how to set up an Arduino to measure the capacitance of a capacitor. This can be useful if the capacitor is unlabeled or if it is self-built.

Capacitance is an object’s ability to store an electric charge. Reasonably, this object is referred to as a capacitor. A capacitor that stores this charge in an electric field between two conductive plates is known as a parallel plate capacitor.

Measure Capacitance with Arduino – [Link]

Arduino-based inductance meter

mg_1131-600

Lukas of Soldernerd built a DIY Arduino-based inductance meter:

I’ve just finished a little Arduino project. It’s a shield for the Arduino Uno that lets you measure inductance. This is a functionality that I found missing in just about any digital multi meter. Yes, there are specialized LCR meters that let you measure inductance but they typically won’t measure voltages or currents. So I had to build my inductance meter myself.

[via]

Arduino-based inductance meter – [Link]

Advanced LC meter

LCM3(2)_th

by Hristo:

After finishing my last project – “Simple LC meter“, there were some discussions in the forum I am a member of, that ability to measure electrolytic capacitors would be very useful in this type of device.

I searched the Web and found a very cute project named LCM3 on this Hungarian site: hobbielektronika.hu . I love Hungarian rock since my school days, but I don’t know a word in Hungarian :( . So, I searched the Web again, this time for this specific project and found a Russian forum where the project was discussed in details and I got more useful information about parts, settings and so on.

Advanced LC meter – [Link]

Avoid these common aluminum electrolytic capacitor pitfalls

avoid_aluminum_capacitor_pitfalls_fig1

by Robert Kollman @ edn.com:

Aluminum electrolytic capacitors remain a popular choice in power supplies due to their low cost. However, they have limited life and are sensitive to both hot and cold temperature extremes.

Aluminum electrolytic capacitors are constructed with foils placed on opposite sides of paper saturated with an electrolyte. This electrolyte evaporates over the capacitor’s lifetime, altering its electrical properties. If the capacitor fails, it can be spectacular as pressure builds up in the capacitor, forcing it to vent a combustible and corrosive gas.

Avoid these common aluminum electrolytic capacitor pitfalls – [Link]

Advanced capacitors ensure long-term performance stability

advanced_capacitors_ensure_control_stability_fig2

by Radovan Faltus @ edn.com:

To meet the demanding performance and harsh environmental conditions of automotive applications, component manufacturers have developed professional-grade tantalum capacitors that ensure long-term electrical performance stability. The professional tantalum technology satisfies the automotive industry’s need for rugged capacitors that maintain high-performance standards under electrical and mechanical stress. Technical improvements have been made that strengthen the structure of the capacitor and give it more robust performance in a variety of applications.

Advanced capacitors ensure long-term performance stability – [Link]