Tag Archives: Capacitor

Component Tester FISH 8840 Review


Alan Parekh @ hackedgadgets.com has a review of a cheap component tested he found on ebay. This device can test bipolar transistors, MOSFET, diodes, thyristors, resistors and capacitors. He writes:

This is an inexpensive component tester called the FISH 8840 which you can find from many online eBay retailers for around $30. The interface is very simple, attach a device to be tested and press the test button. It turns off after about 20 seconds, pressing the off button puts it into sleep mode immediately. There is a ZIF socket that allows you to insert leaded devices and pads that allow you to press SMD devices directly onto the tester.

Component Tester FISH 8840 Review – [Link]

OpenCVMeter – Rediscover Your Capacitors


OpenCVMeter is an open source tool to measure capacitance and leakage current as a function of a capacitor’s working voltage.

When designing circuits, many hobbyists take capacitors for granted – but each type (ceramic multi-layer, aluminum electrolytic, tantalum, mica…) has its own unique properties. Nowadays, ceramic capacitors are the most commonly used capacitors in the industry, but many can lose up to 80% of their rated capacitance near their voltage ratings.

Enter the OpenCVMeter! This meter aims to provide a Capacitance versus Voltage characterization accurate within 1% of the capacitors for your next project (or already have and are starting to wonder about right now…)

OpenCVMeter – Rediscover Your Capacitors – [Link]

Not a battery, not a cap: Murata’s small energy [storage] device


by Graham Prophet @ edn-europe.com:

To meet what the company sees as a gap in the available range of energy storage solutions, Murata has developed the UMAC, a small, high-capacity cylinder-type energy device for use in wearable and wireless sensor applications. Although lithium-ion based, Murata differentiates it from a battery.

The UMAC is a miniature device with a high energy storage capacity, low internal resistance, fast charging and discharging and the ability to withstand load fluctuations. It may be used as a secondary battery in the same way as a capacitor. The UMAC achieves better charge/discharge characteristics and has an extended cycle life superior to conventional batteries. Suited for use as a power supply for wearable devices or sensor nodes for wireless sensor networks, the UMAC maintains flat voltage characteristics while accommodating a wide range of load characteristics.

Not a battery, not a cap: Murata’s small energy [storage] device – [Link]

Measure Capacitance with Arduino


by Maximous @ instructables.com:

This tutorial provides a guide on how to set up an Arduino to measure the capacitance of a capacitor. This can be useful if the capacitor is unlabeled or if it is self-built.

Capacitance is an object’s ability to store an electric charge. Reasonably, this object is referred to as a capacitor. A capacitor that stores this charge in an electric field between two conductive plates is known as a parallel plate capacitor.

Measure Capacitance with Arduino – [Link]

Arduino-based inductance meter


Lukas of Soldernerd built a DIY Arduino-based inductance meter:

I’ve just finished a little Arduino project. It’s a shield for the Arduino Uno that lets you measure inductance. This is a functionality that I found missing in just about any digital multi meter. Yes, there are specialized LCR meters that let you measure inductance but they typically won’t measure voltages or currents. So I had to build my inductance meter myself.


Arduino-based inductance meter – [Link]

Advanced LC meter


by Hristo:

After finishing my last project – “Simple LC meter“, there were some discussions in the forum I am a member of, that ability to measure electrolytic capacitors would be very useful in this type of device.

I searched the Web and found a very cute project named LCM3 on this Hungarian site: hobbielektronika.hu . I love Hungarian rock since my school days, but I don’t know a word in Hungarian :( . So, I searched the Web again, this time for this specific project and found a Russian forum where the project was discussed in details and I got more useful information about parts, settings and so on.

Advanced LC meter – [Link]

Avoid these common aluminum electrolytic capacitor pitfalls


by Robert Kollman @ edn.com:

Aluminum electrolytic capacitors remain a popular choice in power supplies due to their low cost. However, they have limited life and are sensitive to both hot and cold temperature extremes.

Aluminum electrolytic capacitors are constructed with foils placed on opposite sides of paper saturated with an electrolyte. This electrolyte evaporates over the capacitor’s lifetime, altering its electrical properties. If the capacitor fails, it can be spectacular as pressure builds up in the capacitor, forcing it to vent a combustible and corrosive gas.

Avoid these common aluminum electrolytic capacitor pitfalls – [Link]

Advanced capacitors ensure long-term performance stability


by Radovan Faltus @ edn.com:

To meet the demanding performance and harsh environmental conditions of automotive applications, component manufacturers have developed professional-grade tantalum capacitors that ensure long-term electrical performance stability. The professional tantalum technology satisfies the automotive industry’s need for rugged capacitors that maintain high-performance standards under electrical and mechanical stress. Technical improvements have been made that strengthen the structure of the capacitor and give it more robust performance in a variety of applications.

Advanced capacitors ensure long-term performance stability – [Link]

Curious C-beeper


Electronics DIY published a new build, the Curious C-beeper:

Curious C-Beeper is a fun to build little probe that can be used to quickly detect the capacity of capacitors in pF nF range, test their stability with temperature changes, find broken wires, locate wires, trace wires on PCBs, and to locate live wires behind the walls without touching them. The circuit uses three transistors to make a most unusual capacitance beeper probe. When a capacitor is touched to the probe, the probe beeps at a frequency that varies with capacitance. The frequency change is so steep with capacitance that tiny capacitors may be precisely matched or an exact fixed value may be selected to replace a trimmer in a prototype.


Curious C-beeper – [Link]