Tag Archives: CD4017

Power-on Reminder with LED Lamp

Many a times equipment at workstations remains switched on unnoticed. In this situation, these may get damaged due to overheating. Here is an add-on device for the workbench power supply that reminds you of the power-on status of the connected devices every hour or so by sounding a buzzer for around 20 seconds. It also has a white LED that provides good enough light to locate objects when a main fails.

Here, IC NE555 (IC1) is wired as an astable multivibrator, whose time period is set to around six minutes using resistors R1 and R2, preset VR1 and capacitor C1 for sounding the buzzer every hour. The output of IC1 is fed to the clock input of IC CD4017 (IC2). Capacitor C3 and resistor R3 provide power-on-reset pulse to IC2. When power to the circuit is switched on, pin 3 of IC2 goes high. After around one hour, its output pin 11 (Q9) goes high and the buzzer sounds. This cycle repeats until the two npn transistors. The LDR offers a very high resistance in darkness, i.e., when no light falls on it. Therefore when power fails, transistor T1 gets reverse biased to drive transistor T2 and the white LED (LED2) glows. The lamp circuit is powered by a 9V rechargeable battery, which is charged via resistor R5 when mains is present. Thus in darkness, the LED remains power to the circuit is switched off. The automatic lamp is built around a light-dependent resistor (LDR) and ‘on.’

This project is used as reminder alerts with robust repeat scheduling, flexible snooze and full customization.

Power-on Reminder with LED Lamp – [Link]

Anti-Drowsiness Alarm

This reference design is an anti-drowsiness alarm, which aims to keep the drivers alert by disrupting one’s drowse. According to the study by U. S. National Highway Traffic Safety Administration (NHTSA), drowsy driving is the primary contributor of at least 100,000 auto crashes a year. Statistics shows that most crashes caused by drowsy driving occur from midnight to 8:00 am. During these times, a person often goes to sleep since it is dark outside.

The light dependent resistor (LDR) and the transistors (Q2 and Q3) serve as switch that prevents the oscillation of CD4060 binary counter. When the LDR is exposed to light (i.e., daytime), Q3 conducts while Q2 does not. This makes the RESET pin of CD4060 high to prevent it from oscillating. At night, Q3 does not conduct while Q2 conducts and pulls the RESET pin of CD4060 to ground. This starts the oscillations of CD4060 as indicated by the flashing of LED6. The internal oscillator of binary counter CD4060 oscillates at a frequency based on the values of R8, R9 and C3. The sensitivity of the LDR can be adjusted by the potentiometer R12. When the Q13 (pin 3) output of CD4060 becomes high, the RESET pin (pin 4) of the NE555 becomes high and it starts oscillating. Its pulse rate can be slightly adjusted using the potentiometer R6. The pulsed output of NE555 is then fed to the clock input of CD4017. The CD4017 is a decade counter with ten outputs, but only one of its outputs is high at a time and all the other outputs remain low. The output from NE555 serves as clock for CD4017. As a result, the Q1 output of CD4017 becomes high at the first positive edge from NE555 after 50 seconds. After 6 minutes, the Q6 output goes high and LED4 glows for one minute and the warning buzzer sounds. If the circuit is not reset using push-to-switch 1977737-1 after hearing the warning beep from PZ1, the counting of CD4017 continues and at the end of the 10th minute, the Q9 output becomes high to activate CD4093.

This circuit is designed to keep the drivers awake while driving at night. This is done by sounding intermittent beeps and by emitting flashing light. As long as Q9 output of CD4017 remains high, CD4093 oscillates and the piezobuzzer beeps and the white LEDs flash with a frequency determined by the values of R3 and C1.

Anti-Drowsiness Alarm – [Link]

Simple capacitance meter bins parts


This Design Idea describes a simple two-chip CMOS circuit that can sort capacitors into 20 bins over a wide range (100pF to 1μF), using 10 LEDs to display the value range. The circuit is power efficient and can be run using two CR2032 cells. As such, it can be built into a handheld probe. by Raju Baddi

Simple capacitance meter bins parts – [Link]

24 LED Police Flasher

Dual color (4 line x 3 column) led, 12 white and 12 blue are intermittently switched controlled by two NPN transistors BC337.  The speed and duty/cycle timing of lighting duration is determined by NE555 oscilator. The number of repetition of sequential lighting of each group of led is determined by 5-stage divide-by-10 Johnson counter with 10 decoded outputs and carry out bit (CD4017).

The intermittent lights from two group of led imitate the police car strobe lights.
The speed of switching off and on of led are continuously regulated by variable trimmer resistor.

24 LED Police Flasher [Link]

Hand Steadiness Tester

The Hand Steadiness Tester is a game which tests the steadiness of your hand. The player has to take the ring from one end to another end without touching it to the wire. In this the player gets 4 turns. If the player touches the wire 4 times he has to reset the game & start the whole game from the beginning.

This project consists of IC 4017, a Buzzer, a Relay, some resistors, a Push button and 4 LEDs. There is also a PCB layout given. There are many types of Hand Steadiness Testers which are very simple. This New Hand Steadiness Tester is more advanced.

Hand Steadiness Tester – [Link]

Running Lights with CD4017

The 555 Astable generates a clock for this circuit, an oscillator giving a square wave output at pin 3 which is counted by 4017 to give a running lights effect.

The decade counter-divider CD4017 has 10 outputs, for every low to high transition at the clock input, rising edge, the counter advances one LED. After going one full circle the the first LED lights again and it goes on. You can vary the value of R2 100K Linear potentiometer to make LEDs run fast or slow.

Running Lights with CD4017 – [Link]

LED Dice


When you touch the TOUCH PLATE wires, the LEDs start flashing in a similar manner to a dice rolling over and over. This gradually slows down to rest and a number is displayed exactly like the spots on a dice.This circuits use LM555 and CD4017.It’s very fun. [via]

LED Dice – [Link]