Tag Archives: chip

Fully reprogrammable optical chip developed

bristol_popup

by Graham Pitcher @ newelectronics.co.uk:

Researchers from the University of Bristol and NTT in Japan have developed an optical chip that can process photons in an infinite number of ways. According to the team, the fully reprogrammable chip marks a ‘new era of research’ for scientists and engineers at the cutting edge of quantum technologies. Dr Anthony Laing, who led the project, said: “A whole field of research has essentially been put onto a single optical chip that is easily controlled. The implications of the work go beyond the huge resource savings. Now anybody can run their own experiments with photons, much like they operate any other piece of software on a computer. They no longer need to convince a physicist to … painstakingly build and conduct a new experiment.”

Fully reprogrammable optical chip developed – [Link]

Infineon’s Security Chip

20150728020126_InfineonOptiga

by Martin Cooke @ elektormagazine.com:

Protection of Intellectual Property is a major issue as industrial systems become increasingly more interconnected. According to Bartol Filipovic, head of the Product Protection and Industrial Security department at the Fraunhofer Institute for Research “Most companies have no idea just how easy it is to copy their products, encrypted software is not enough to protect standard products or machine code. The software must be ideally stored inside protected hardware.”

Infineon has developed a broad range of semiconductor technologies to counter these growing security threats. The OPTIGA Trust E SLS32AIA hardware security device provides a cost effective solution for high value goods. It forms part of the OPTIGA™ Trust family high-security solution for industrial automation systems, smart homes, consumer and medical devices. The OPTIGA™ Trust E provides enhanced protection of services, business models and user experience. Based on its 1-way authentication mechanism, it uniquely identifies objects and provides protection of Public Key Infrastructure (PKI) networks.

Infineon’s Security Chip – [Link]

CHIP – The World’s First Nine Dollar Computer

chip

C.H.I.P. is a computer. It’s tiny and easy to use.

C.H.I.P. does computer things. Work in LibreOffice and save your documents to C.H.I.P.’s onboard storage. Surf the web and check your email over wifi. Play games with a bluetooth controller. With dozens of applications and tools preinstalled, C.H.I.P. is ready to do computer things the moment you power it on.

C.H.I.P. is a computer for students, teachers, grandparents, children, artists, makers, hackers, and inventors. Everyone really. C.H.I.P. is a great way to add a computer to your life and the perfect way to power your computer based projects.

CHIP – The World’s First Nine Dollar Computer – [Link]

32-bit Microcontroller Chip – Next-Generation, Eco-Inspired

dream-1

Eco-Inspired 32-bit microcontroller chip for Wearables and the Internet-of-Things.

DREAM-1 is a Next-Generation, Eco-Inspired 32-bit microcontroller chip for Wearables and the Internet-of-Things;
No limitations – powered by Eco-Logic technology: minimal energy, maximum speed, event-driven, instantaneously responsive and energy-performance adaptive;
Fully compatible – DREAM-1 apps can be developed with existing software flows, programming languages and configured wirelessly over Bluetooth;
Exclusive – limited sampling batch only available on Kickstarter to perfect its design.

32-bit Microcontroller Chip – Next-Generation, Eco-Inspired – [Link]

CMOS Image Sensors Surpassing Moore’s Law

rcj_Image-Sensor_CMOS_3D_1

R. Colin Johnson @ eetimes.com:

PORTLAND, Ore. — Complementary metal oxide semiconductor (CMOS) imaging chips are becoming the industry’s leader in advanced process technology — instead of the traditional leaders (processors and memory) — thanks to strong demand for CMOS imaging chips in everything from smartphones to tablets to medical equipment and automobiles. Apparently, now the innovation surpasses Moore’s Law, says analyst firm Yole Développement.

Imaging was once done by film, but with the advent of solid-state sensors the technology breakthroughs seem to be growing exponentially, doubling with each new innovation (see slide 1), thus surpassing the traditional interpretation of Moore’s Law, argues Yole Développement (Lyon, France) in a new paper. Yole calls this effect “More than Moore.”

CMOS Image Sensors Surpassing Moore’s Law – [Link]

World’s 1st Spectrometer On-a-Chip

unnamed

by R. Colin Johnson @ eetimes.com:

The world’s first microelectromechanical system (MEMS) spectrometer on-a-chip was shown today at at Photonics West (San Francisco, February 10-12) by Si-Ware Systems (SWS, Cairo, Egypt with offices in La Canada, Calif.) Instead of transporting materials across sometimes great distances to be analyzed with a normal bench-top spectrometer, Si-Ware’s MEMS-powered spectrometer fits in the palm of your hand and thus can be taken to the material to be analyzed.

“Spectrometers are usually bench sized, so your have to take the object to the bench, but now with our MEMS sized you can can take the spectrometer to the object,” said executive vice president, worldwide marketing and business development of Si-Ware, Scott Smyser.

World’s 1st Spectrometer On-a-Chip – [Link]

First germanium-tin semiconductor laser directly compatible with silicon chips

germanium-tin-laser-2

by Colin Jeffrey @ gizmag.com:

Swiss scientists have created the first semiconductor laser consisting solely of elements of main group IV (the carbon group) on the periodic table. Simply, this means that the new device is directly compatible with other elements in that group – such as silicon, carbon, and lead – and so can be directly incorporated in a silicon chip as it is manufactured. This presents new possibilities for transmitting data around computer chips using light, which could result in potential transfer speeds exponentially faster than possible with copper wire and using only a fraction of the energy of today’s integrated circuits.

First germanium-tin semiconductor laser directly compatible with silicon chips – [Link]

Ultra Low Power Chips

imecRFID

by elektor.com:

At the IEEE International Electron Devices Meeting (IEDM) 2014 held in San Francisco last week the laboratory for advanced research in microelectronics (Imec) announced they had designed an 8-bit RFID transponder chip that used so little power it could run for 20 years on a single AAA battery. If predictions about the interconnectivity of all ‘things’ in the future are to be realized then it will be necessary to optimize the design of sensors and electronics so that they do their job using as little energy as possible.

Ultra Low Power Chips – [Link]

 

Spectrometer-on-a-Chip

Nano

by elektor.com:

A California-based start-up called NanoLambda have developed a low-cost ($10) spectrometer sensor chip called Apollo which makes possible a wide range of new sensing applications. The sensor is capable of measuring individual wavelengths of light and is accurate to 1 nm with 10 nm resolution.

Optical spectroscopy is a very powerful non-invasive diagnostic technique and has been used for decades in many fields including health care. However the equipment cost using traditional methods of spectrum analysis has limited its area of application to professional use only. Using the company’s nano fusion technology NanoLambda have fabricated a sensor from thin nanofilter arrays which reduces the size and cost to about 1 % compared with traditional sensing equipment. The sensor’s sensitivity bandwidth can be defined in the manufacturing process and even allows detection in the infra-red region. The small physical size of the sensor makes it ideal for use for unobtrusive, wearable health monitoring applications.

Spectrometer-on-a-Chip – [Link]

Researchers combine logic, memory to build a ‘high-rise’ chip

1-stanfordteam

by Stanford University @ phys.org. For decades, the mantra of electronics has been smaller, faster, cheaper. Today, Stanford engineers add a fourth word – taller.

At a conference in San Francisco, a Stanford team will reveal how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today’s circuit cards.

Those circuit cards are like busy cities in which logic chips compute and memory chips store data. But when the computer gets busy, the wires connecting logic and memory can get jammed.

The Stanford approach would end these jams by building layers of logic atop layers of memory to create a tightly interconnected high-rise chip. Many thousands of nanoscale electronic “elevators” would move data between the layers much faster, using less electricity, than the bottle-neck prone wires connecting single-story logic and memory chips today.

Researchers combine logic, memory to build a ‘high-rise’ chip – [Link]