Tag Archives: chip

CH340E, A New Small Serial to USB Chip

WCH, a Chinese integrated circuits manufacturer, has just released a new serial to USB chip called CH340E. Unlike other CH340 chips, it doesn’t require an external crystal and also needs less PCB space and BOM.

CH340 is a 3x3mm tiny chip comes in MSOP10 package and has 10 pins. Although it is smaller than other alternatives, it is a little more expensive than them. But considering other components and PCB size needed, the total cost of the BOM may be lower.

According to Electrodragon, it needs only two external parts to build a full function circuit. They also tested it with up to 150,000 baud rate to flash an ESP8266 chip. Most features and technical specifications are the some for CH340 family including CH340E, so the same drivers will work with it.

CH340E features

  • Full-speed USB device interface, compatible with USB V2.0.
  • Emulation standard serial port used to upgrade the original serial peripherals or add additional serial port via USB.
  • Computer applications under the Windows operating system serial port are fully compatible, without modification.
  • Hardware full duplex serial port, built-in send and receive buffer, support communication baud rate 50bps ~ 2Mbps.
  • Support common MODEM contact signal RTS, DTR, DCD, RI, DSR, CTS.
  • Through the additional level conversion device, providing RS232, RS485, RS422 and other interfaces.
  • Software compatible CH341, CH341 driver can be used directly.
  • Support 5V supply voltage and 3.3V supply voltage or even 3V supply voltage.
  • Built-in clock, no external crystal.
  • Available in SOP-16 and SSOP-20 and MSOP-10 lead – free packages, RoHS compliant.

The chip costs about 42 cents with a minimum order of 5 pieces on Eelectrodragon store. There is also an option to get a small board featuring the CH340E for about $1, and maybe cheaper in the future. Finally, the most powerful feature of this chip is that you can easily add USB connectivity to your own design.


Source: CNX-software

Making A Pickit 3 Clone

Make Your Own Pic Programmer and Debugger. by reviahh @ reviahh.wordpress.com

After using the Microchip tools to program and debug the projects I work on, I wondered about creating my own programming/debugging module that I could put on my own boards – just like Microchip does with their starter kits and such. As I became more interested in that idea, I began to search the web to see if anyone else had already done something similar. Initially, I found lots of posts regarding the 2nd version of the Pickit – the Pickit 2, but not as much regarding the latest version – the Pickit 3 – which is what I need to program the 32 bit pic processors that I am using.

Making A Pickit 3 Clone – [Link]

Open-V, The Open Source RISC-V 32bit Microcontroller

Open source has finally arrived to microcontrollers. Based on RISC-V instruction set, a group of doctoral students at the Universidad Industrial de Santander in Colombia have been working on an open source 32-bit chip called “Open-V“.

Onchip, the startup of the research team, is focusing on integrated systems and is aiming to build the first system-on-chip designed in Colombia. The team aims to contribute to the growth of the open source community by developing an equivalent of commercial microcontrollers implemented with an ARM M0 core.

The Open-V is a 2x2mm chip that hosts built-in peripherals which any modern microcontroller could have. Currently, it has ADC, DAC, SPI, I2C, UART, GPIO, PWM, and timer peripherals designed and tested in real silicon. Other peripherals, such as USB 2, USB3, internal NVRAM and/or EEPROM, and a convolutional neural network (CNN) are under development.

Open-V Chip Specifications

  • Package: QFN-32
  • Processor RISC-V ISA version 2.1 with 1.2 V operation
  • Memory: 8 KB SRAM
  • Clock: 32 KHz – 160 MHz, Two PLLs, user-tunable with muxers and frequency dividers
  • True Random Number Generator: 400 KiB/s
  • Analog Signals: Two 10-bit ADC channels, each running at up to 10 MS/s, and two 12-bit DAC channels
  • Timers: One general-purpose 16-bit timer, and one 16-bit watch dog timer (WDT)
  • General Purpose Input/Ouput: 16 programmable GPIO pins with two external interrupts
  • Interfaces: SDIO port (e.g., microSD), two SPI ports, I2C, UART
  • Programming and Testing
    • Built-in debug module for use with gdb and JTAG
    • Programmable PRBS-31/15/7 generator and checker for interconnect testing
    • Compatible with the Arduino IDE

RISC-V is a new open instruction set architecture (ISA) designed to support architecture research and education. RISC-V is fully available to public and has advantages such as a smaller footprint size, support for highly-parallel multi-core implementations, variable-length instructions to support an optional dense instruction, ease of implementation in hardware, and energy efficiency.

Open-V core provides compatibility with Arduino, so it is possible to benefit from its rich resources. Also when finish preparing the first patch, demos and tutorials will be released showing how Open-V can be used with the Arduino and other resources.

The Open-V microcontroller uses several portions of the Advanced Microcontroller Bus Architecture (AMBA) open standard for on-chip interconnection. This makes any Open-V functional block, such as the core or any of the peripherals, easy to incorporate into existing chip designs that also use AMBA. We hope this will motivate other silicon companies to release RISC-V-based microcontrollers using the peripherals they’ve already developed and tested with ARM-based cores.
We think buses are so important, we even wrote a paper about them for IEEE LASCAS 2016.

Open-V Development Board Specifications

Onchip team are also developing a fully assembled development board for their Open-V. It is a 55 mm x 30 mm board that features everything you need to get start developing with the Open-V microcontroller, include:

  • USB 2.0 controller
  • 1.2 V and 3.3 V voltage regulators
  • Clock reference
  • Breadboard-compatible breakout header pins
  • microSD receptacle
  • Micro USB connector (power and data)
  • JTAG connector
  • 32 KB EEPROM
  • 32-pin QFN Open-V microcontroller

Compared with ARM M0+ microcontrollers, power and area simulations show that a RISC-V architecture can provide similar performance. This table demonstrates a comparison between Open-V and some other chipsets.

OnChip Open-V microcontroller designs are fully open sourced, including the register-transfer level (RTL) files for the CPU and all peripherals and the development and testing tools they use. All resources are available at their GitHub account under the MIT license.

We think open source integrated circuit (IC) design will give the semiconductor industry the reboot it needs to get out of the deep innovation rut dug by the entrenched players. Just like open source software ushered in the last two decades of software innovation, open source silicon will unleash a flood of hardware innovation. The Open-V microcontroller is one concrete step in that direction.

A crowdfunding campaign with $400k goal has been launched to support manufacturing of Open-V. The chip is available for $49 and the development board for $99. There are also many options and offers.

Self-learning neuromorphic chip composes music

Peter Clarke @  eedesignnewseurope.com reporting:

Research institute IMEC has created a neuromorphic chip based on metal-oxide ReRAM technology that has the ability to self-learn. That self-learning has been applied to music making.

Self-learning neuromorphic chip composes music – [Link]

Reverse engineering the 76477 sound effect chip

Ken Shirriff has written an article on reverse engineering the 76477 “Space Invaders” sound effect chip:

Remember the old video game Space Invaders? Some of its sound effects were provided by a chip called the 76477 Complex Sound Generation chip. While the sound effects1 produced by this 1978 chip seem primitive today, it was used in many video games, pinball games. But what’s inside this chip and how does it work internally? By reverse-engineering the chip from die photos, we can find out. (Photos courtesy of Sean Riddle.) In this article, I explain how the analog circuits of this chip works and show how the hundreds of transistors on the silicon die form the circuits of this complex chip.

Reverse engineering the 76477 sound effect chip – [Link]

Inside the vintage 74181 ALU chip

Ken Shirriff writes:

The 74181 ALU (arithmetic/logic unit) chip powered many of the minicomputers of the 1970s: it provided fast 4-bit arithmetic and logic functions, and could be combined to handle larger words, making it a key part of many CPUs.

Inside the vintage 74181 ALU chip – [Link]

Bluetooth chip is only 4x4mm

by Julien Happich @ edn-europe.com:

Part of the Swatch group, EM Microelectronic announced what the company believes to be the world’s smallest Bluetooth chip. Offered in a 4x4mm QFN-28 package, in a WLCSP-21 or as a bare-die, the EM9304 is optimized for Bluetooth v4.2 low energy enabled products.

ICStripBoard – PCB rapid prototyping tool

 

ICStripBoard is a innovative cheap tool to enable rapid prototyping of surface mount integrated circuits (IC’s) and allow their usage in prototype electronics projects.

Inline surface mount IC’s come in a Variety of packages which are different sizes and these Printed Circuit Boards (PCB’s) have been designed to accommodate the majority of IC’s. Available in the four standard IC pitches (space between IC pins) of 0.5mm, 0.65mm, 0.95mm and 1.27mm. These boards have been designed as long strips on thin (half the standard thickness) 0.8mm FR4 boards which can easily be cut to the correct amount of pins which the IC in question has. This allows the strip to be cut for multiple IC’s on multiple projects.

The cut pieces can easily be soldered and glued to other prototyping products and in conjunction with traditional through hole components can be used to create unique electronic prototypes. These boards will allow you to experiment with multiple IC’s without having to build PCB’s and is far cheaper than buying alternative break out boards due to the fact you cut them to size and the pattern repeats down the strip allowing this to be done multiple times. (more…)

Software Defined Radio IC Decap

Software Defined Radio teardown: R820/RTL2832U Decap

Recently there has been much interest in two integrated circuit which were originally designed to receive FM radio and DVB-T TV (as used in Europe).
Some enterprising people quickly realised that since they were based on software-defined techniques they could be quickly re purposed for all sorts of clever things.

Software Defined Radio IC Decap – [Link]

Keeping up with Moore’s Law

20160816100854_toshiba-memorys

by Clemens Valens @ elektormagazine.com:

There was a time that every extra storage byte crammed into a chip was greeted with cheers and applause but today only few people will get the champagne out when an extra gigabyte or so is announced. We have become so used to the ever growing capacity of memory chips that new product launches in this area do not create much excitement anymore. Yet sometimes an event manages to stir things up a bit, like a few weeks ago when a major semiconductor manufacturer announced that it started sampling its new 32 gigabyte flash memory chip.

Keeping up with Moore’s Law – [Link]