Tag Archives: development board

Microchip’s New Open Source SAMA5D27 SOM Module Runs Mainline Linux

American microcontroller manufacturer company Microchip has unveiled an open source, mainline Linux ready “SAMA5D27 SOM” module. This module is based on a SiP implementation of its Cortex-A5-based SAMA5D27 SoC with 128MB RAM. The 40 x 38mm module is also compatible with a SOM1-EK1 dev board.

SAMA5D27 SOM1

SAMA5D27 SOM1
SAMA5D27 SOM1

The SAMA5D27 SOM is Microchip’s first computer-on-module based on a Linux-ready application processor, and the first SiP-based module built around a SAMA5 SoC. It is mainly designed for rugged IoT applications and the module can be soldered onto a baseboard for versatile ease of use. It offers long-term availability and supports industrial grade -40 to 85°C temperature range.

The SAMA5D27 SOM1 combines the RAM-ready SAMA5D27C-D1G SiP with 64Mb of non-volatile QSPI boot flash and a 10/100 Ethernet PHY.  The module also integrates a 2Kb EEPROM with pre-programmed MAC address. The SOM is further equipped with a PMIC and a 3.3V power supply. Typical power consumption ranges from 120mA to 160mA. There’s also a 60mA idle mode and an ultra-low 30mA mode.

This module has 128 GPIO pins including 2x USB 2.0 host, one USB device, and 2x SD/MMC interfaces with eMMC 4.51 support. There is also support for 10x UART, 7x SPI, 2x CAN, camera and audio interfaces, and much more.

Like the Xplained boards, the module is open source, from the mainline Linux support to the posting of open schematics, design, Gerber, and BoM files for both the SOM and the optional SOM1-EK1 development board.

SAMA5D2 SiP

SAMA5D2 SiP
SAMA5D2 SiP

The newly launched SAMA5D2 SiP is built around the Microchip SAMA5D2. The FreeRTOS-focused 128MB version uses a lower-end SAM5D22 model limited to 16-bit DDR2 RAM while the Linux-ready 512MB and 1GB versions use the higher end SAMA5D27 and SAMA5D28, respectively, with 16/32-bit DDR. All the models are renowned for offering CAN support, and because the SAMA5D28 also adds security features, it’s the only one that is pre-certified for PCI Security.

The SAMA5D has fewer I/O pins and slower performance (166-500MHz) compared to the earlier, 600MHz SAMA5D4, but the power consumption is significantly lower. The SAMA5D2 SoC can run at less than 150mW in active mode at 500MHz with all peripherals activated, and at less than 0.5mW in low power mode with SRAM and registers retention.

SOM1-EK1 development board

SOM1-EK1 Development Board
SOM1-EK1 Development Board

The SAMA5D27-SOM1-EK1 development kit is built around a baseboard with a soldered SAMA5D27-SOM1 module with the 128MB (1Gb) configuration. This board is enhanced with SD and microSD slots, as well as a 10/100 Ethernet port, a micro-USB host port, and a micro-USB device port with power input.

Additional I/O option for this dev board includes USB HSIC, CAN, JLINK, and JTAG interfaces. There’s a tamper connector, 4x push buttons, an LED, supercapacitor backup, and an ATECC508 CryptoAuthentication device. A Linux4SAM BSP is available with Linux kernel and drivers.

The ATSAMA5D27-SOM1 is available for $39, and the ATSAMA5D27-SOM1-EK1 development board is available for $245 each. The ATSAMA5D2 SiP starts at for $8.62 each. More information may be found in Microchip’s SAMA5D2 SiP and SOM announcement and launch page, which points to SOM and SiP pages, as well as the SAMA5D27-SOM1-EK1 dev board page.

Open-Q 845 HDK Development Board Integrates Snapdragon 845 SoC And Runs Android 8.0

Intrinsyc’s new Open-Q 845 HDK Development Kit has the same Mini-ITX (170 x 170mm) dimensions and sandwich-style design as the Open-Q 835 from the previous year. The main SoC, Snapdragon 845 is integrated into the board topped by a heatsink. This dev board includes a smartphone like 5.7-inch QHD (1440 x 2560) touchscreen controlled via MIPI-DSI, as well as a camera board with dual rear-facing cameras and a front-facing camera.

Open-Q 845 Development Board with optional touchscreen
Open-Q 845 Development Board with optional touchscreen

The Open-Q 845 runs Android 8.0 on the Snapdragon 845 SoC with 6GB LPDDR4x RAM. The Snapdragon 845 SoC is equipped with 4X high-performance Kryo cores (up to 2.80 GHz) and 4X low-power Kryo cores (up to 1.8 GHz) and the graphics processing is handled by the new Qualcomm Adreno 630 GPU. There’s also a microSD slot and a 128GB UFS 2.1 flash drive. Like the Open-Q 835, the board offers Bluetooth 5.0 + BLE along with 2.4/5GHz 2×2 802.11a/b/g/n/ac and the latest WiGig60 802.11ad WiFi with an onboard antenna.

This board is further enhanced with a GNSS daughter card with GPS, GLONASS, COMPASS, and Galileo support and a PCB antenna and SMA connector option. There are mini-PCIe and PCIe slots for further wireless and peripheral expansion.

Video ports include DSI-driven HDMI 1.4 port, USB 3.1 Type-C DisplayPort, and dual 4-lane MIPI-DSI connectors. There are also 3x 4- and 2-lane MIPI-CSI ports on a single 120-pin connector that support dual 16-megapixel or a single 32-megapixel front-facing camera. This kit supports the Snapdragon 845’s capability for 4K @ 60fps, 10-bit HDR video playback and capture using H.264 (AVC) and H.265 (HEVC) compression.

Open-Q 845, front view (with optional touchscreen)
Open-Q 845Development Board front view (with optional touchscreen)

The audio department is handled by Qualcomm audio codec driver. It supports a headset jack and analog audio input and output headers. There are several I/O ports like DP-ready USB 3.1 Type-C, 2X USB 2.0 host ports, and a micro-USB serial port. Other additional features include NFC and sensor expansion headers with I2C, SPI, UART, and GPIO. The dev kit includes a power management function, as well as 12V/3A input from wall adapter and a 3000mAh Li-Ion battery.

Intrinsyc’s Open-Q 845 HDK Development Kit is available for pre-order at $1,079. No shipping date information was published to this date. More information may be found on the Open-Q 845 product page.

Banana Pi M2 Magic, Smallest Banana Pi Board

Sinovoip had announced its new board Banana Pi M2 Magic. At first, it is an ARM SoC development board that features a high computing performance in a 51mm square portable design. In addition to onboard WiFi and Bluetooth, M2 Magic offers 8GB eMMc storage and DDR3 SDRAM of 512 MB. There is also an SD card slot for more storage, to install an OS for example.

Banana Pi M2 Magic

Banana Pi M2 Magic specifications:

  • SoC: Allwinner R16 or Allwinner A33, quad-core ARM Cortex-A7 processor with ARM Mali 400 MP2 GPU
  • System Memory: 512MB DDR3
  • Storage: 8 GB eMMC flash (option: 16, 32 or 64GB) + micro SD slot
  • Display Interface: 4-lane MIPI DSI connector
  • Camera Interface: CSI connector supporting up to 5MP sensor, 1080p30 H.265 video capture
  • Video Decoder: Multi-format FHD video decoding, including Mpeg1/2, Mpeg4, H.263, H.264, etc H.264 high profile 1080p@60fps
  • Audio: Onboard microphone
  • Connectivity: Wifi 802.11 b/g/n, Bluetooth 4.0 LE (AP6212)
  • USB: 1x USB 2.0 host, 1x micro USB 2.0 OTG port
  • Expansion: 40-pin header with GPIOs, UART, I2C, SPI, PWM…
  • Misc: Reset & power buttons, RGB LEDs,
  • Power Supply:
    • 5V @ 2A via DC power barrel
    • 3.7V Lithium battery support
  • Dimensions: 51 x 51 mm
  • Weight: 40 grams

Alongside the processor and the memory at the front side of the board, you will find a 40-pin GPIO header, a DSI display slot, an Antenna connector, a CSI camera slot, a USB OTG adapter, a USB2.0 port, a microphone and a DC power jack. On the rear side, there is an antenna, a PMIC AXP223, a battery interface and a microSD card slot.

Front and rear sides

This board is oriented for IoT applications in general. Since there is no HDMI interface, M2 Magic is suitable for headless use, or you can use the MIPI DSI display interface to connect a screen. It also doesn’t have an Ethernet interface, so you will have to use WiFi and Bluetooth connectivity.

The board will run Tina IoT Linux, which is a lightweight Linux distribution optimized for Allwinner R-Series processor.

Tina IoT Linux

Both A33 and R16 versions are available in the market. A33 version is for $23, while R16 is for $28. You can get it from any global distributor or cooperative partner of Banana Pi products. Finally, you can reach more information and data at the official wiki.

Fennec: LoRa Development Board

An ultra low power LoRa sensor node powered by just one CR2032 batter. By Harm Wouter Snippe:

Do you want to measure temperature, connect a soil humidity sensor in your vegetable garden or monitor the air quality at your street corner? With the Fennec Development Board you are able to connect almost any sensor and create your own amazing ultra low power wireless projects. We have created the most energy efficient Arduino compatible IoT device with LoRa communication in the world. Powered by only a button cell you can send sensor readings every 15 minutes for the next five years over long distances (5-15km).

40 Pin & 28 Pin dsPIC Development Board

40-pin-28-pin-dspic-development-board-pic1

The dsPIC Development board has been designed mainly for Motor dsPIC30F4011 Digital Signal Controller in the 40-pin motor control socket and dsPIC30F4012 28 Pin digital signal controller, the board can also be used with other dsPIC ICs. Board provided with 3.3V and 5V regulator, crystal oscillators and a programming connector. In addition, the board is populated with dual header connector for all I/O, reverse supply protection diode, onboard 3.3V & 5V LED, Screw terminal for supply input, push button switch for reset, 6 pin header connector for programming, serial communication  header connector, jumpers for multi serial communication option , electrolytic capacitor for filters. Optional provision for LM317T TO220 Regulator for 3.3V and 5V and Jumper for 3.3V or 5V power supply selection to power up the dsPIC.

40 Pin & 28 Pin dsPIC Development Board – [Link]

PIC16F 28-pin Development Board with LCD

pic16f-28-pin-pic-development-board-with-lcd-img2

This development board offers various important add-ons which we considered are important to a developer of Microcontroller based project from Microchip.

Features

  • This board can be used with any of the 16F / 28 Pin PIC ICs compatible with 16F73 MCU. This kit is supplied with a PIC 16F73 MCU for development purposes.
  • The Clock frequency to the MCU is a 4 Mhz Crystal
  • This Development Board offers a ICSP connector for easy download of your code onto the MCU. Resistor R1 and Diode D1 Offer protection of Programming voltage interfering with the Supply voltage.
  • A 16×2 Backlight LCD helps as a displays of data in your project. PR1 controls the Contrast of the LCD.

PIC16F 28-pin Development Board with LCD – [Link]

pcDuino4 Nano, A $20 Development Board

A new low cost development board is available for pre-ordering at $20, it is called “pcDuino4 Nano”. pcDuino term comes from combining Mini PC with Arduino and it is a platform that runs PC-like OS such as Android ICS or Ubuntu.

pcDuino boards can be used to learn programming and understand how to use linux OS. It also works as an interface with electronics hardware alongside the typical activities such as browsing internet and watching movies.

pcduino4-nano

pcDuino4 Nano based on Allwinner H3 SoC, which has a 1.2 GHz quad core Cortex A7 CPU 512KB cache, with an ARM Mali-400MP2 GPU up to 600 MHz. This chip supports DDR2 and DDR3 memories, Ultra HD 4k and Full HD 1080p video decoding, camera and audio integration.

pcDuino4 Nano comes with 1GB RAM memory, microSD card slot, USB 2.0 and micro USB ports, HDMI port, 3.5mm jack, 10/100 M ethernet, DVP interface, pin headers for expansions and powered by 5V.

Here is the full specifications:

  • SoC – Allwinner H3 quad core Cortex A7 @ 1.2 GHz with an ARM Mali-400MP2 GPU up to 600 MHz
  • System Memory – 1GB DDR3 SDRAM
  • Storage – microSD card slot
  • Video & Audio Output – HDMI and 3.5mm jack for CVBS (composite + stereo audio)
  • Connectivity -10/100M Ethernet
  • USB – 3x USB 2.0 host ports, 1x micro USB OTG port
  • Camera – DVP Interface
  • Expansions – 40-pin Raspberry Pi compatible header with UART, SPI, I2C, PWM, GPIOs, etc…
  • Debugging – 4-pin header for serial console
  • Misc – Power and reset buttons; 2x LEDs; IR receiver; on-board microphone.
  • Power Supply – 5V/2A via micro USB port; 4.7V ~ 5.6V via VDD pin on “Raspberry Pi” header.
  • Dimensions – 64 x 50mm (smaller than Arduino UNO and Raspberry Pi)

You might notice that this board is very similar to another one called NanoPi M1. They have the same design, features, ports and schematic and according to CNXSoft the manufacturer is the same. The main difference we can detect is that pcDuino4 has a white PCB and the other has a blue one.

pcduinonanopi

Source: CNXSoft