Tag Archives: Development

DTMF Module

C039_1

DTMF Development Board offers a very convenient way to generate DTMF tones and demodulate it.  It uses the famous MT8880/MT8888 DTMF transreceiver IC.

  • Easy 10 pin Box Header connector for interfacing data/control pins
  • Crystal derived frequency source for accurate generation and demodulation of DTMF tones for your project
  • Onboard upto 350 mW audio amplifier block for DTMF tones with Volume Adjust Preset
  • 5V Supply sourced via interfacing Box Header
  • Header  type analog connection
  • Four mounting holes 3.2 mm each
  • PCB dimensions 56 mm x 49 mm

DTMF Module – [Link]

ATMEGA16/32 DEVELOPMENT BOARD

C032_1

ATmega16/32 Development Board provides a very simple and cost effective platform for prototyping solution.  The compact design provides connection to all the pins of the microcontroller for the user.

  • Prototyping solution available for 40-pin ATmega series AVR microcontroller from ATMEL
  • All the four ports available to the user via standard 10 pin box header connector with supply of 5 VDC for interfacing circuits
  • Onboard reset switch for easy reset of the microcontroller

ATMEGA16/32 DEVELOPMENT BOARD – [Link]

40 & 28 PIN PIC Development Board

PIC004

The PIC 40 / 28 PIN (DIP) Development / Evaluations board demonstrates the capabilities of Microchip’s 8-bit microcontrollers, specifically, 28- and 40-pin PIC16FXXX, PIC16F1XXX, and PIC18 devices. It can be used as a standalone demonstration board with a programmed part. With this board you can develop and prototype with all Microchip’s 40 & 28 PIN PIC microcontrollers which doesn’t require crystals (External Oscillator). On board connector for UART (RX-TX) allows an easy connection with embedded hardware. The board has a Reset switch and status LEDs.

40 & 28 PIN PIC Development Board – [Link]

16F628A Microcontroller development board

photo

This project is a versatile, configurable, and cost effective development board available for the 16F628A or other 18 PIN Microcontroller from Microchip. The board has simplest form with all the Port pins terminating in a Relimate connector (Header Connector) for easy connection to the outside world.

16F628A Microcontroller development board – [Link]

PROPEL Program Seeks Startups with Innovations in Distributed Sensing & Intervention

PROPELBanner

Fraunhofer TechBridge, Greentown Labs launch program to accelerate energy innovations’ path to market

Boston, MA – April 16, 2015 – Access to external feedback early in the development process is critical for building successful innovative products. For large companies, such access is easily obtained; for startup companies, however, industry feedback is hard to come by. To assist entrepreneurs in that effort, Fraunhofer TechBridge (a program of Fraunhofer CSE) and Greentown Labs have teamed up to launch PROPEL, a six-month program for startups to refine their prototypes, obtain customer feedback, and develop their businesses for success in the market.

With the vision of a smarter, interconnected world, PROPEL is seeking complementary innovations in self-powered Wireless Sensor-Actuator Networks that can radically change how we interact with our surroundings. The program, sponsored by Shell GameChanger, is seeking startups that are:

  • Creating technologies for distributed sensing and actuation networks;
  • Developing prototypes and/or integrated systems for customer validation;
  • Looking to develop strategic partnerships with industry as a potential go-to-market strategy;
  • Interested and able to relocate to Greentown Labs in Somerville, MA for the duration of the program.

Continue reading PROPEL Program Seeks Startups with Innovations in Distributed Sensing & Intervention

DIY AVR Development Board with Atmega128

atmega128_diy_development_board

by Radu Motisan @ pocketmagic.net:

For many of my previous projects I used AVR Microcontrollers extensively. I started with the Atmega8 and moved to superior AVR variants depending on the application complexity and requirements. Before designing any particular application, I usually do my research on a development board. It is a PCB featuring the target microcontroller and minimal support logic that usually covers a regulated power supply, pin headers to connect peripherals and/or a few LEDs used for basic debugging.

Such boards are available in many shapes and colours, from simple to complex and most of the times they are affordable (after all we’re talking about a minimal PCB with a microcontroller and a few, mostly passive, components).

DIY AVR Development Board with Atmega128 – [Link]

FPGA boards under $100: Introduction

Lat

Michael Dunn @ edn.com writes:

Whether engineer, hobbyist, or maker, we’ve happily watched as chipmakers and third parties alike have come to their senses in recent years and cooked up a smorgasbord (smorgasboard?) of low-cost microcontroller devboards – in some cases, very low cost, like TI’s $4.30 MSP430 board. More recently, we’ve seen ARM Cortex kits for $10-$50, the flowering of the whole Arduino ecosystem, and of course, the Raspberry Pi, starting at $25. It’s microcontroller heaven.

Those of us wanting a cheap “in

Hydra-X10 and Hydra-X20 by Active-Semi Inc.

Hydra-X is a development platform which is feature-rich, scalable, and easy to use.

The Hydra-X is based on the Power Application Controller (PAC)™ family of ICs. Hydra-X gives you the ability to execute your own code on a 32-bit ARM Cortex core, paralleled with analog resources such as multi-mode power manager (for AC-DC, DC-DC power management), configurable Analog Front-End (AFE), data converters (1 MHz 10-bit ADC, 2 precision DACs), 52 V, 72 V, 600 V gate drivers, and open drain drivers, to name a few.

With up to 14 PWM timing functions, you will find it hard to run out of timing resources. Fully configurable into PWM, input capture or output compare, these timers are expanded by a dead time generator block; extremely useful when driving external FETs in a half H-Bridge configuration and a dead time needs to be imposed in order to protect the design from shoot-through.

Hydra-X10 and Hydra-X20 by Active-Semi Inc. – [Link]