Tag Archives: drone

XBEE X V2 FPV Racing Drone Kit

XBEE, the FPV racing drones manufacturer, had produced recently its new racing frame “XBEE X V2” for $75. It is a follow-up to the previous model “The XB-X Mk2” and it is a quad drone frame with a camera on its body. X V2 is designed with Wheelbase 220mm size guide.

First-person view (FPV) is also known as video piloting. Using this technique you can control a radio-controlled vehicle from the driver or pilot’s view point. The vehicle is either driven or piloted remotely from a first-person perspective via an onboard camera, fed wirelessly to video FPV goggles or a video monitor.

V2 Features:

  • Full Carbon Fiber.
  • 2mm Bottom Plate, 2mm Top Plate and 4mm arms
  • Matek PDB include(PDB-XPW W/ CURRENT SENSOR 140A & DUAL BEC)
  • Black steel screws(option titanium screws)
  • Transmitter mount include
  • weight : 79g

To build a full drone with the V2 frame you will need these parts with a total budget of about $450:

This video by X-FramesFPV will show you how to build XBEE X V2:

You can also follow this guide for detailed instructions of a full build of V2.

Turn Your Raspberry Pi Into A Wi-Fi Drone Disabler

Note: The information presented here is for educational purposes. This tutorial is designed to help users understand the security implications of using unprotected wireless communications by exploring its use in a popular drone model: the Parrot AR.Drone 2.0. It’s illegal to access computer systems that you don’t own or to damage other people’s property, the techniques should only be performed on devices that you own or have permission to operate on.

Using a Raspberry Pi with a touchscreen, and running a couple of simple Bash scripts, Brent Chapman built a device that will drop Wi-Fi controlled drones right out of the sky with just a tap of your finger.


The device concept is finding the unsecured Wi-Fi access point used by the pilot smartphone or tablet to control the drone, then log on to the drone’s default gateway address, and shuts down the system from the inside without the pilot knowing.

This will only work on some models of drones which use Wi-Fi as the interface between the controller and the drone, such as Parrot’s Bebop and AR.Drone 2.0, that are entirely controlled via Wi-Fi.

The AR.Drone 2.0 is an ideal platform for experimentation and learning thanks to its many impressive features and sensors plus its low cost. It creates an access point named “ardrone2_” followed by a random number, that the user can connect to via a smartphone. This access point is open by default with no authentication or encryption. Once a user connects the device to the access point, he or she can launch the app to begin control of the drone.


At first, you have to connect the Raspberry Pi with a touchscreen, this guide by adafruit might be helpful. When they are ready, the next step is preparing couple of bash scripts. The first is named “join_network.sh”, and it used to make the Pi automatically join the AR.Drone 2.0 access point.


The second script is named “poweroff.sh”,it will initiate a telnet connection to the drone, then send the command of poweroff, which tells the drone to shut everything down.


The last step is building a “Cantenna”, a DIY directional antenna made of a can to boost the wireless signal. You just need to drill a hole on an empty can to hold a N connector then connect it to Wi-Fi card.


Keep in mind, you should only try this tool on your own personal drones safely and at your own risk. You can find the complete guide at this link at makezine.

Building A Quadcopter For Newbie

Drones are one of the rising technologies in the world and it became very popular that we see it in news on places that have armed conflicts, aerial photography like GoPro drones and even for customer care like the Prime Air delivery system from Amazon which is designed to get packages to customers using small unmanned aerial vehicles (aka drones).

If this is the first time to read about how to build a quadcopter, then this post is for you. Boris Landoni from OpenElectronics made a detailed how-to tutorial on how to build a quadcopter in two parts.


As the name implies, the quadcopter has four propellers and to control them we need a lot of electronics parts and with no doubt a control board. The control board which Boris Landoni build is based on Arduino Mega and manages the engines of the drone with up to eight outputs, receives commands from a remote controller and supports the telemetry function via smartphone using HC-05 Bluetooth module.


GY-86 flight control sensor module is used on top of main board (the small blue board) which combines MPU-6050 (3-axis accelerometer and 3-axis gyroscope), a digital 3-axis compass HMC5883L form Honeywell and the pressure sensor MS5611 MEAS.

Boris talked about the firmware that could be used to control the main board, but chose MultiWii firmware which is a general purpose software to control a multirotor RC model.

MultiWii Configuration GUI - Image Source eng.ucsd.edu
MultiWii Configuration GUI – Image Source eng.ucsd.edu

He used six-channel remote control operating on the 2.4 Ghz frequency. Each channel controls one surface or component in the quadcopter.



 Main Board Assembled on the Frame and Connected with RC Receiver (the black box in the left of the main board)
Main Board Assembled on the Frame and Connected with RC Receiver (the black box in the left of the main board)

You can do both the telemetry and the control via Bluetooth from your smartphone using EZ-GUI Android application, which is a Ground Control Station (GCS) for UAVs based on MultiWii and Cleanflight.


Boris talked about PID parameters calibration, a control loop feedback mechanism used to control systems. He shared an interesting video showing how changing these values changes the behavior of the quadcopter.


The full assembly instructions and other important notes by Boris are found in the two part how-to tutorial: Part1Part2.

Bill of Material
Bill of Material

Drone The Quadcopter


Sameer Gupta tipped us with his latest project, a DIY Quadcopter:

“Drone The Quadcopter” is an featured UAV. I design my project with F450 arm in X-mode design. The full operation takes place via a Flysky FSCT6 remote control unit which gives a better operating range of 800 Meter to 1.2KM.

Drone The Quadcopter – [Link]