Tag Archives: Flexible

A flexible Arduino Prototype

A lot of makers have started venturing into the wearable world in which everything is portable, invisible, light, flexible and functional. Many have found that using Arduino compromised two of those characteristics. Arduino is not flexible, and it is not invisible which is why it is hard to incorporate into this kind of projects.

NextFlex in Silicon Valley has created a prototype of a flexible Arduino, based on the Arduino mini. The prototype is printed on a polymer and then the standard components are bonded. This means that the device is not yet completely flexible since it includes some rigid components, but the company hopes that in the future components such as resistors and capacitors would be printable too.

The process for making the flexible Arduino involves automated screen printers and industrial inkjet printers for printing the circuit on a 1mm thick flexible plastic board. Then, the microcontroller silicon die is connected directly into the surface with high precision.

The conductive ink used is an advanced formulation of silver ink with bending and flexing capabilities, and with strong adhesion to the surface. The ink is not new in the market, but the company is working toward making more reliable and resilient materials.

This device could bring wearables to a whole new level of comfort and could also be used in a lot of situations such as when space is an important variable, or when weight could affect the correct functioning of the device. As a result, the device would not only be useful for makers, but also for students, product designers etc.

On June 26 of the current year, NextFlex will be taking about the project at the Sensors Expo & conference in San Jose, California.

Manufacturers think that prices in this kind of technology would drop rapidly, making it accessible for everyone to use on their projects. NextFlex wants to make this kind of technology the new mainstream for all kind of projects. Flexible microcontrollers could also be used in IoT and medical applications.

In conclusion, Arduino is already a beloved microcontroller because of its open source hardware and software, its ability to be easily programmed, and its low cost, but now it could also be known because of its practical presentation, and ability to be blended. This device is just a prototype and we should expect improvements in the future, but the future is looking bright for makers.

Intexar™ Heat – A Revolutionary Stretchable Ink And Film Technology To Make Flexible Heated Garments

DuPont Advanced Materials (DuPont) in association with Taiwanese company Formosa Taffeta, has developed a powered smart clothing technology named Intexar™ Heat, for on-body flexible heating garments.

The new fabric is thin, lightweight, and durable. The Intexar™ Heat is an ideal solution for outdoor clothing and it is designed to be easily integrated into garments. This innovative technology consists of a thin layer of carbon resistors, interconnected by an underlying layer of silver electrodes printed on a stretchable thermoplastic polyurethane (TPU) laminate. The silver electrodes supply currents throughout the resistor grid to radiate a right amount of heat within garments. By default, the active layer is sandwiched between a plain or customized outer protective layer. This protective layer shields the heating element from exposure and the fabric making up the garment.

Intexar Heat powers smart clothing technology for on-body heating
Intexar Heat powers smart clothing technology for on-body heating

Michael Burrows, the global business manager at DuPont Advanced Materials, described Intexar™ Heat as a revolutionary stretchable ink and film that when powered, creates a comfortable warmth. Formosa Taffeta Company will be the first textile manufacturer to apply Intexar™ Heat technology as part of its Permawarm® line. The new Permawarm® lineup will provide clothing with a complete garment heater system including the Intexar™ heater layer, connectors, and control software.

James Lee, president of FTC, said,

With Permawarm™, clothing brands can focus on garment design and brand engagement. We are taking the guesswork out of bringing their customers safe and comfortable heated garments.

Intexar™ materials can also be very useful in biometric monitoring in smart clothing. Pulse rate, respiratory rate, muscle activity and form awareness are all measurable using sensors and conductive pathways built from Intexar™ which makes it a complete smart garment solution.

To cope with the coming era of functional thermal insulation this is a huge step forward for heat-insulation fabrics. It is a new high-tech lightweight material ideal for thermal insulation in the winter.

Researchers Develop New Technique To Print Flexible Self-healing Circuits For Wearable Devices

The researchers of North Carolina State University in the US, lead by Jingyan Dong, have developed a new technique for directly printing flexible, stretchable metal circuits. The innovative technique can be used with multiple metals and alloys. It is also compatible with existing manufacturing systems which can integrate this new printing technology effortlessly.

Flexible PCB designed by the researchers
Flexible PCB designed by the researchers

The technique uses the well known electrohydrodynamic printing technology. This popular technology is already used in many manufacturing processes that use functional inks. But instead of using conventional functional ink, Jingyan Dong’s team uses molten alloys having melting point as low as 60 degrees Celsius. This new technique was demonstrated using three different alloys, printing on different substrates such as glass, paper, and two types of stretchable polymers. Jingyan Dong added,

Our approach should reduce cost and offer an efficient means of producing circuits with high resolution, making them viable for integrating into commercial devices.

The researchers tested the flexibility of the circuits on a polymer substrate and found that the circuit’s conductivity was uninterrupted even after being flexed 1,000 times. The circuits were still electrically firm even when stretched to 70 percent of tensile strain. The above figures are surprising enough, especially when printing flexible wearables is the main target.

Even more interesting, the circuits can heal themselves if they are broken by being bent or stretched beyond their limitations. On the other hand, because of the low melting point, one can simply heat the affected area up to around 70 degrees Celsius and make the metal flow back together, repairing the related damage with ease.

The researchers demonstrated the functionality of the printing technique by creating a high-density touch sensor, packing a 400-pixel assemblage into one square centimeter. The researchers have demonstrated the flexibility and functionality of their approach. Now, they are planning to work with the industry sector to implement the technique in manufacturing wearable sensors or other electronic devices.

The days of truly flexible, self-healing wearable smart gadgets are not so far because of the hard work of these researchers.

Brand New BiCMOS Flexible Transistor


The transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things since its very first practically implemented device as a point-contact-transistor invented in 1947 and getting the Nobel Prize in Physics in 1956.

Now, engineers from the University of Wisconsin-Madison (UW-Madison) have built the most flexible, fully-functional transistor in the world!  The BiCMOS  (Bipolar Complementary Metal Oxide Semiconductor) thin-film transistor has all current transistor’s characteristics: speed, carrying large current and low dissipation – but it is extremely flexible.

This is an interesting advance that could open the door to an increasingly interconnected world, enabling manufacturers to add smart wireless capabilities to any number of large or small products that curve, bend, stretch and move.

Making traditional BiCMOS flexible electronics was difficult, in part because the process takes several months and requires a multitude of delicate, high-temperature steps. Even a minor variation in temperature at any point could ruin all of the previous steps. This fabrication process is not currently as commercially viable for most of applications.

However, the engineers fabricated their flexible electronics on a single-crystal silicon nanomembrane on a single bendable piece of plastic. The secret to their success is their unique process, which eliminates many steps and slashes both the time and cost of fabricating the transistors.

This new electronic has the potential to change the electronic’s industry in a new way. Everything touched by electronics (computers, microcontrollers, sensors…) could be completely flexible due the easily of this new technology to scale up to commercial levels.

The vast majority of transistors are now produced in integrated circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009 and with a cost of just a couple of usd, can use as many as 3 billion transistors. This is the best transistor’s advantage: mass-production with a extremely low cost.

For that reason, the transistor is the key active component in practically all modern electronics. The transistor is on the list of IEEE milestones and many consider it to be one of the greatest inventions of the 20th century.

This new flexible transistor could be in future electronic boards for a flexible electronics development and applications never even seen before. Definitely, the future is now.

Researchers Developed New Efficient, Thin, and Flexible Cooling Device

Engineers and scientists from the UCLA Henry Samueli School of Engineering and Applied Science and SRI International, California, have created a thin flexible device that could keep smartphones and laptop computers cool and prevent overheating. The component is based on the electrocaloric effect – a phenomenon where the temperature of material changes when an electric field is applied to it. The research has been published in Science.

Thin, flexible cooling device
Thin, flexible cooling device

The system’s flexibility also allows it to be used in wearable electronics, robotic systems, and new types of personalized cooling systems. It is the first demonstration of a solid-state cooling device based on the electrocaloric effect. The method devised by UCLA and SRI researchers is very energy-efficient. It uses a thin polymer film that transfers heat from the heat source – a battery or a processor – to a heat sink, and alternates contact between the two by switching on and off the electric voltage.

Because the polymer film is very flexible, the system can be used in devices with complex shapes or moving surfaces. Body tracking wearable devices can easily accommodate this flexible cooling device. Such cooling pad could keep a person comfortable in a hot office and thus lower the electricity consumption for air conditioning. Or it could be placed in a shoe to keep a runner comfortable while running in the sun. It’s like a personal air conditioner.

The tendency of flexible electronics to overheat remains a major challenge for engineers. The cooling systems in larger devices like air conditioners and refrigerators, which use vapor compression, are just too large for mobile electronics. The new cooling device produces a specific cooling power of 2.8 watts per gram and a COP of 13. This is more efficient and compact than the existing surface-mountable solid-state cooling technologies, opening a path to using the technology for a variety of practical applications.

Roy Kornbluh, an SRI research engineer, said,

The development of practical efficient cooling systems that do not use chemical coolants that are potent greenhouse gases is becoming even more important as developing nations increase their use of air conditioning.

Researchers Developed Hybrid 3D Printing Method To Make Flexible Wearable Devices

Wearable electronic devices that intend to track and measure the body’s movements must be soft enough to flex and stretch to accommodate every body-movement. But, integrating rigid electronics on skin-like flexible materials has proven to be challenging. Clearly, Such components cannot stretch like soft materials can, and this mismatch frequently causes wearable devices to fail. Recently scientists solved this problem by developing a new method called hybrid 3D printing.

Making wearble devices using Hybrid 3D Printing method
Making wearable devices using Hybrid 3D Printing method

A collaboration between the Wyss Institute, Harvard’s John A. Paulson School of Engineering and Applied Sciences, and the Air Force Research Laboratory, has resulted in developing hybrid 3D printing method. It combines soft, electrically conductive inks, and matrix materials with rigid electronics into a uniformly stretchable device. Alex Valentine, a Staff Engineer at the Wyss Institute says,

With this technique, we can print the electronic sensor directly onto the material, digitally pick-and-place electronic components, and print the conductive interconnects that complete the electronic circuitry required to ‘read’ the sensor’s data signal in one fell swoop.

To make the circuits and the flexible layers, the researchers use thermoplastic polyurethane (TPU), both pure and with silver flakes. The method is quite easy to understand. As both the substrate and the electrodes contain TPU, they firmly adhere to one another while they are co-printed layer-by-layer. After the solvent evaporates completely, both of the inks harden, forming an integrated system that is both flexible and stretchable.

As the ink and substrate are 3D-printed, the scientists have complete control over where and how the conductive features are patterned. Thus they can design circuits to create soft electronic devices of nearly every size and shape. The hybrid 3D printing method enables development of flexible, durable wearable devices that move with the body.

A ring that is made using flexible conductingmaterial
A ring that is made using flexible conducting materials

Conductive materials exhibit changes in their electrical conductivity when stretched. Soft sensors, that detect movements, are made of those materials and are coupled with a programmable microcontroller to process those data. The microcontroller also transmits the data to communicate in a human-understandable way. As a proof-of-concept, the team created two devices – a wearable device that indicates how much the wearer’s arm is bending and a pressure sensor in the shape of a person’s left foot.

Watch the video to know about them,

Cheap ARM Cortex-m0 MCU Printed on Plastic Costs as low as 0.01$

Flexible electronics is one of the emerging technologies with the rise of connected things in IoT age. This increases the need of low cost electronics to use.

Photo Courtesy of PragmatiIC

PragmatIC the specialized company in low cost flexible electronics wants to enable trillions of “smart objects” to sense and communicate with their environment, but the problem is: to turn ordinary objects —like clothing, documents, or packaging of consumer goods— into smart objects, the price needed for this is far below the cheapest silicon chip. Moreover, the thickness of silicon represents another obstacle to integrate electronics seamlessly into products. The PragmatIC’s approach tries to solve these problems.

Photo Courtesy of PragmatiIC

Pragmatic print electronics on a piece of 10-µm-thick plastic which is thinner than a human hair.

PING (Printed Intelligent NFC Game cards and packaging) and a bottle with illuminating brand are examples of use cases of Pragmatic solution.

Back to the title of this news, PlasticARM is the new project started 2 years earlier in collaboration with ARM to implement a fully functional 32-bit ARM Cortex-M0 MCU on 10-µm-thick flexible plastic.

Image Source: Charbax

Charbax from ARMDevices.net made an interview with the CEO, Scott, during IDTechEx Show. Scott said that the last version of PlasticARM is printed on 1 square CM area and the next version will have the half size.

Cris —a VP Technology in ARM— holding Plastic ARM. Image Source: Charbax’s interview

Source: ARMdevices

Record-setting flexible phototransistor revealed


Researchers at the University of Wisconsin-Madison have revealed a unique phototransistor that is flexible and faster and more responsive than any similar phototransistor.

The innovative phototransistor could improve the performance of myriad products — ranging from digital cameras, night-vision goggles and smoke detectors to surveillance systems and satellites — that rely on electronic light sensors. Integrated into a digital camera lens, for example, it could reduce bulkiness and boost both the acquisition speed and quality of video or still photos.

Record-setting flexible phototransistor revealed – [Link]