Tag Archives: Google

Google Unveils USB Type-C Version Of It’s Edge TPU AI Chip

Google has come up with its Edge TPU machine learning chip announcement by also revealing a USB Type-C based device that can be plugged into any Linux or Android Things computer, including a Raspberry Pi. The company announced a USB stick computer version of Edge TPU that can work with any Linux or Android Things computer. It also published more details on the upcoming, NXP-based Edge TPU development kit, including its SoC NXP i.MX8M.

Two views of the Edge TPU dev kit
Google’s Edge TPU dev kit

The Edge TPU Accelerator uses the same mini-scaled Edge TPU neural network coprocessor that is built into the upcoming dev kit. It has a USB Type-C port to connect with any Debian Linux or Android Things computer to accelerate machine learning (ML) inferencing for local edge analytics. The 65 x 30mm device has mounting holes for host boards such as a Raspberry Pi Zero.

Same as the Edge TPU development kit, the Edge TPU Accelerator enables the processing of machine learning (ML) inference data directly on-device. This local ML accelerator increases privacy, removes the need for persistent connections, reduces latency, and allows for high performance using less power.

The Edge TPU Accelerator starts competing with products like Intel’s Neural Compute Stick, previously referred to as the Fathom. The USB-equipped Neural Compute Stick is equipped with the Movidius Myriad 2 VPU and neural network accelerator.

The Edge TPU dev kit details

The Edge TPU Accelerator is going to ship in October this year along with the Edge TPU chip and development kit. It was informed that the computer-on-module that features the Edge TPU will run either Debian Linux or Android Things on NXP’s i.MX8M. The 1.5GHz, Cortex-A53 based i.MX8M integrates a Vivante GC7000Lite GPU and VPU, as well as a 266MHz Cortex-M4 MCU.

The yet unnamed, 48 x 40mm module will ship with 1GB LPDDR4, 8GB eMMC, dual-band WiFi-ac, and Bluetooth 4.1. The baseboard of the dev kit will add a microSD slot, as well as single USB Type-C OTG, Type-C power (5V input), USB 3.0 host, and micro-USB serial console ports.

The Edge TPU development kit baseboard is further provided with GbE and HDMI 2.0a ports, as well as a 39-pin FPC connector for 4-lane MIPI-DSI and a 24-pin FPC for 4-lane MIPI-CSI2. There’s also a 40-pin expansion connector, but with no claims for Raspberry Pi compatibility. The 85 x 56mm board also provides an audio jack, a digital mic, and a 4-pin terminal for stereo speakers.

More information may be found in the Edge TPU Accelerator announcement, as well as the original Edge TPU announcement.

Google Reveals Four New ARM-based production Boards For Android Things 1.0

Earlier this month, Google released Android Things 1.0 and announced many consumer products that will ship in the coming months based on the stripped-down, IoT-oriented Android variant. Google uncovered four ARM-based production boards for Android Things 1.0: Innocomm’s i.MX8M based on WB10-ATIntrinsyc’s Open-Q 212A and Open-Q 624A, based on the Snapdragon 212 and 634, respectively, and the MediaTek MT8516.

The most important news with the first market-ready release of Android Things is that Google is offering free OTA security and patch updates for three years to all targeted devices. However, Google needs a licensing deal to deploy more than 100 commercial systems using the OTA updated long-term version of Android Things, and the OS itself is “managed” and tightly controlled by Google.

The modules share the same small footprints of about a 50 x 50mm. They also focus on audio features that might support integration with the Google Assistant voice agent. The first round of consumer devices using Android Things are smart speakers and automation hubs that integrate Google Assistant.

WB10-AT

InnoComm Google WB10AT COM
InnoComm Google WB10AT COM

InnoComm’s 50 x 50mm WB10-AT COM is almost identical to the WB10 module announced in March. The only difference except for the OS is that the AT version ships with 1GB LPDDR4 instead of 2GB. The WB10-AT includes a 1.5GHzCortex-A53 based NXP i.MX8M Quad SoC with a 266MHz Cortex-M4 core. It extends 8GB eMMC, 802.11ac, Bluetooth 4.2, and a GbE controller.

The WB10-AT allows HDMI 2.0 with 4K HDR support, as well as extensive audio I/O enabled by the audio-savvy i.MX8M. Audio specs include 4x SAI, DSD512, and S/PDIF.

Open-Q 212A Development Kit

Open-Q 212A board and module
Open-Q 212A board and module

Intrinsyc’s Open-Q 212A is a sandwich-style SBC designed for next-gen smart speaker and voice-controlled home hub products. There is a new 50 x 46.5mm Open-Q 212A Android Things SOM with a quad-core, Cortex-A7 Qualcomm Snapdragon 212 (SDA212) — the lowest-end SoC available for Android Things mounted on a 170 x 115mm carrier board.

The new module provides 1GB LPDDR3, 4GB eMMC, WiFi-ac, and BT 4.2. The 12V carrier board adds 2x USB host ports, a micro-USB client port, and a micro-USB debug port. It also includes a MIPI-CSI and MIPI-DSI interfaces, with the latter capable of up to 720p LCD displays. PCB antennas are also available.

Open-Q 624A Development Kit

Open-Q 624A
Open-Q 624A

This new sandwich-style kit is Google’s high-end Android Things platform. It connects a new Open-Q 624A Android Things SOM and carrier board, each of which is the same size as their Open-Q 212A counterparts.

The module extends 2GB RAM4GB eMMCWiFi-ac, BT 4.2, and a new, undocumented octa-core Snapdragon 624 SoC based on the existing Snapdragon 625. Like the Snapdragon 625, the 624 provides 8x Cortex-A53 cores at up to 1.8GHz along with an Adreno 506 GPU with support for 4K @ 30fps video. Google calls the Snapdragon 624 the SDA624, and in one place Intrinsyc refers to it as the APQ8053, which is also the name of the Snapdragon 825.

The Open-Q 624A carrier board has a feature set that is very similar to that of the similarly sized Open-Q 212A board. However, it adds a USB 3.0 Type-C port, sensor expansion and haptic output, and an optional GPS receiver, which like the module’s WiFi and Bluetooth, is available with an antenna.

MediaTek MT8516

MediaTek MT8516
MediaTek MT8516

Google refers to the MT8516 as a virtual SoM, as opposed to the other physical modules, and suggests that the module’s capabilities are directly integrated into a reference board designed for high volume applications.

Whatever the form factor, the MT8516 provides a quad-core, 1.3GHz Cortex-A35 processor with 4GB eMMC, WiFi, BT, and RF. The platform is intended for voice assistance and other audio applications and provides 4-channel I2S x2, 8-channel TDM, and 2-channel PDM input for voice input control and connected audio.

The Cortex-A35 cores draw about 33 percent less power per core and occupy 25 percent less silicon area than Cortex-A53. The -A35 design lies at the heart of NXP’s i.MX8X SoC, which is also available in two dual-core models. The i.MX8X is found on Phytec’s phyCore-i.MX 8 module.

More information may be found on this Google Android Things Supported Platforms page, as well as at these four product pages:

Google Launches New DIY Artificial Intelligent Kit Powered by The Raspberry Pi Zero WH

The Google AIY (Artifical Intelligent Yourself) Project Team is no new and has been in existence for a while now. Their job is to deal with two significant parts of the AI community namely; voice and image recognition. Although they launched the first generation of AIY Vision and Voice kits that comes equipped with a Raspberry Pi last year, they have now modified the kits and this lead to the creation of a new generation of AIY Vision and Voice kits. Unlike the previous kits which made use of Raspberry Pi 3, the new kits which are smarter and cost-effective are based on the smaller Raspberry Pi Zero WH.

AN INTELLIGENT CAMERA

Due to the “continued demand” for the Voice and Vision kits mostly from parents and teachers in the STEM environment, Google decided to “help educators integrate AIY into STEM lesson plans and challenges of the future by launching a new version of our AIY Kits.” The new vision kit has a Raspberry Pi Camera Module V2 which can be easily assembled to create a do-it-yourself intelligent camera which cannot only capture images but also recognize faces and objects.

The Vision Kit comes with USB cable and a pre-provisioned micro SD card. Raspberry Pi Zero WH which the new kit was based on, has the same features as the Raspberry Pi Zero W. However, the Pi Zero WH comes with a soldered 40 – pin GPIO. It is also more flexible and less expensive than Raspberry Pi 3. The Vision kit is less costly as compared to the previous version because Pi Zero WH was used and can be bought for just $90. Other parts of the Vision Kit include; the cardboard case, a speaker, wide lens kit, standoffs and many more.

A SMART SPEAKER

 

The Voice Kit has most of the features found in Vision Kit but there are few differences such as the absence of a camera module and the presence of a Voice Bonnet Hat and Voice Hat stereo Microphone boards. If you argued that cardboard cannot talk, then you were wrong as the AIY Voice Kit has accomplished that already. The kit comes enclosed in cardboard and costs $50. It also has a speaker, wires, and even an arcade button.

The Voice Kit is linked with Google Cloud Speech API & Google Assistant SDK , can answer questions and perform certain tasks that has been programmed to do.

The new AIY Kits are available for purchase at US retailer Target:

The kit is expected to be available in the UK this summer.

The Google team is introducing a new way to interact with the Kits alongside the traditional use of “monitor, keyboard, and mouse” using a companion app for Android devices. The app aims to make wireless setup and configuration a snap. The app will be available alongside the launch of the new kits from the Google Play store. Google is also working on iOS and Chrome companion apps, which should be coming along soon.

More information about this development can be found on the Google AIY website

Google Bristlecone, The Race To Quantum Supremacy

On Monday, March 05, 2018, research scientists from the Google Quantum Al lab whose goal is to build a quantum computer that can be used to solve real-world problems, presented their latest quantum processor called Bristlecone at the annual American Physical Society meeting in Los Angeles.

Qubits or quantum bits are merely the quantum analogue of classical binary bits. Two of the most critical challenges researchers face in their journey to achieve quantum supremacies are error rules and subsequent scalability, this is because qubits are unstable and can be unfavorably affected by noise and can only maintain one state for less for one hundred of microseconds.

Researchers from Google have calculated that a system with 49 quantum bits, a circuit depth exceeding 40 and a two-qubit error below 0.5 percent can “comfortably demonstrate” quantum supremacy. Quantum supremacy is the point where quantum computers can run certain algorithms faster than a classical computer ever could. This has been the dream of many major tech startups and companies including Microsoft, IBM, and Intel.

Bristlecone is Google’s newest quantum processor

Every Bristlecone chip has 72 qubits which might significantly reduce the error rates associated with qubits; however, Google believes quantum computing is not all about qubits. The research team further backed this belief with what they wrote in a blog post:

Operating a device such as a Bristlecone at low system error requires harmony between a full stack of technology ranging from software and control electronics to the processor itself.

The guiding design principle for Bristlecone is to preserve the underlying physics of Google’s previous 9-qubit linear array technology which demonstrated low error rates for readout single-qubit gates to 0.1 percent and most importantly two-qubit gates to 0.6 percent as its best result. This device uses the same scheme for coupling, control, and readout, but is now scaled to a square array of 72 qubits. Therefore they chose a device of moderate size to be able to demonstrate quantum supremacy in the future, first investigate and secondly order error-correction using the surface code to facilitate quantum algorithm development on actual hardware (quantum computers).

Right now, Bristlecone has crowned Google – King of Quantum Computing, a title which previously belonged to IBM because of their 50 qubits chip. However Bristlecone did not just crown Google, it also shortened the race for quantum supremacy as we know it, which Google is “cautiously optimistic” about winning. Despite Google leading the race in Quantum Computing, the ultimate goal of Quantum Supremacy is still far off and might not be surprised if companies like IBM pull something up in the near future.

Google offers AI vision kit for Raspberry Pi owners

Google’s Vision Kit lets you build your own computer-vision system for $45 along with your own Raspberry Pi.

The company has now launched the AIY (AI yourself) Vision Kit that lets you turn Raspberry Pi equipment into an image-recognition device. The kit is powered by Google’s TensorFlow machine-learning models and will soon gain an accompanying Android app for controlling the device.

According to Google, Vision Kit features “on-device neural network acceleration”, allowing a Raspberry Pi-based box to do computer vision without processing in the cloud. The AIY Voice Kit relies on the cloud for natural-language processing.

Google offers AI vision kit for Raspberry Pi owners – [Link]

Android Things, Google’s IoT Platform

Google had launched Android Things,  a new comprehensive IoT platform for building smart devices on top of Android APIs and Google’s own services. Android Things is now available as a developer preview.

Android Things was basically launched as an enhancement for Brillo, Android based OS used for embedded development in particular for low-power IoT devices, and it is based on its feedback and best practices. Google had announced Android Things as re-branding of Brillo to solve many issues like the security of IoT devices.

Platform Architecture

Both work in conjunction with Weave, an open, standardized communications protocol that supports various discovery, provisioning, and authentication functions. Weave enables device setup, phone-to-device-to-cloud communication, and user interaction from mobile devices and the web. The chief benefit is allowing a “standardized” way for consumers to set up devices. Belkin WeMo, LiFX, Honeywell, Wink, TP-Link and First Alert will adopt Weave to make their devices able to interact with some Google products like Google Assistant.

One of the great things about Brillo was the security issue with IoT applications solved by choosing to use secure boot and signed over-the-air updates and providing timely patches at the OS level. Partnered with hardware manufacturers to build new devices based on Intel Edison, NXP Pico and the Raspberry Pi 3, Google will build the needed infrastructure to run the OS updates and fix security issues respectively on these devices.

Android Things makes developing connected embedded devices easy by providing the same Android development tools, best-in-class Android framework, and Google APIs that make developers successful on mobile. For more details about Android Things you can check the documentation provided here, where you can find also the developer’s preview.

Brillo, the new OS for IoT by Google

Google had launched Brillo, a new Android based OS used for embedded development – in particular for low-power, IoT devices. Brillo brings the simplicity and speed of software development to hardware for IoT with an embedded OS, core services, developer kit, and developer console.

google-brillo-operating-system-for-internet-of-things

Brillo works in conjunction with Weave, an open, standardized communications protocol that supports various discovery, provisioning, and authentication functions. Weave enables device setup, phone-to-device-to-cloud communication, and user interaction from mobile devices and the web. The chief benefit is allowing a “standardized” way for consumers to set up devices.

Brillo Structure
Brillo Structure

The big challenge  is unifying and facilitating the communication among the estimated 200 billion smart devices expected by 2020. Whether you’re looking to build a simple DIY project or implement an enterprise scale m2m (machine to machine) project, Google’s new tools will be a big help.  Fortunately, Brillo appears pretty easy for developers who are already familiar with Android.

Check this video by Google about Brillo and its features, and you can watch another video about Weave

Brillo supports a trio of ARM, Intel, and MIPS hacker SBCs (Single Board Computers) called “ made for Brillo” hardware kits. One of these kits is The Edison kit for Brillo by Intel, that includes an Edison IoT module plugged into a baseboard that offers convenient, Arduino-style expansion compatibility.

Edison for Brillo SBC
Edison for Brillo SBC

One of the great things about Brillo that the security issue with IoT applications is solved by choosing to use secure boot and signed over-the-air updates and providing timely patches at the OS level.

If you are interested in developing Brillo itself you can check the Brillo developer portal where code, development tools, and documentation for the Android-based Brillo embedded OS for Internet of Things devices can obtained. You should ask for an invitation then when you gain access you will get everything needed for your next project.
A high introduction was presented by Intel in the Open IoT Summit  in April 2016, you can check it here.
As Intel, UN and IDC mentioned in their joint report that there will be an average of 26 smart devices for every human in just 5 years, we can predict a rapid growing development and enhancements for IoT systems, devices and protocols.

Time-based One-time Password fob for Google Authenticator

espruino_otp

conoroneill.net has coded an Espruino Pico to work like a HID device.

Now that the Espruino Pico has (beta) HID support, it can pretend to be a keyboard or mouse (or other HID compatible device). This makes it possible to send characters to the active window on your Windows/Linux/Mac PC. I’ve cobbled together some code which turns the Pico into a device like a YubiKey. Press the button and get the latest auth code pasted automatically for you.

Time-based One-time Password fob for Google Authenticator – [Link]