Tag Archives: H-bridge

Dual DC Motor Driver For Robot with L298

L298-DUAL-DC-MOTOR-MODULE-M080AA-500x500

Dual Motor L298 H-Bridge Control project can control two DC motors connected to it. The circuit is designed around popular dual H-Bridge L298 from ST. This board can be configured to drive a single motor with high current rating also. This can be achieved with the help of jumpers on the board. An onboard 5V regulator can take a maximum of 18V of DC input. Should you wish to drive this board with higher voltage then 18V, you will need to connect a external 5V regulated source to the logic circuit. For this you will need to remove J-5V. This board can fit in any small toy or robot due to small size and very low profile. L298 IC is mounted under the PCB in horizontal position to make board small and low profile to fit any small robot. On board 5V regulator can be used to power up external Micro-Controller board as well as internal logic supply.

Features 

  • Motor supply: 7 to 46 VDC
  • Open J-5V Jumper if Input Motor Supply is above 18V ( Required External 5V for Logic)
  • Control Logic Input: Standard TTL logic level
  • Output DC drive to motor: up to 2 A each (Peak)
  • On Board 5V Regulator (Close J-5V to Use On Board 5V Regulator)
  • Enable and direction control pins available
  • External Diode Bridge for protection
  • Heat-sink for IC

Dual DC Motor Driver For Robot with L298 – [Link]

LMD18200 H-Bridge Module for DC Motor

LMD18200_Module_M029

The module has been designed around LMD18200 from Texas Instruments. The LMD18200 is a 3A H-Bridge designed for motion control applications. The device is built using a multi-technology process which combines bipolar and CMOS control circuitry with DMOS power devices on the same monolithic structure. Ideal for driving DC and stepper motors; the LMD18200 accommodates peak output currents up to 6A. An innovative circuit which facilitates low-loss sensing of the output current has been implemented.

Features

  • Powerful bi-directional DC Motor driver
  • Screw-terminals for Power Supply and Motor Connections
  • 6-pin Header connector for PWM, direction, current sense, Brake
  • Delivers Up to 3A Continuous Output (6A Peak)
  • Operates at Supply Voltages Up to 55V
  • Low RDS (ON) Typically 0.33Ω per Switch at 3A
  • TTL and CMOS Compatible Inputs
  • No “Shoot-Through” Current
  • Thermal Warning Flag Output at 145°C
  • Thermal Shutdown (Outputs Off) at 170°C
  • Internal Clamp Diodes
  • Shorted Load Protection
  • Internal Charge Pump with External Bootstrap Capability
  • Mounting holes of 2.6 mm each
  • PCB dimensions 44 mm x 25 mm

LMD18200 H-Bridge Module for DC Motor – [Link]

L293D DC Motor Driver Module

L293D_DC_Motor_Driver_500x500

The project designed around L293D IC. The L293D device is quadruple high-current half-H driver. The 293D is designed to provide bidirectional drive current up to 600mA a voltage from 5V to 36V. L293D Adapter Board can be used as dual DC motor driver or bipolar stepper motor driver. Useful in robotics application, bidirectional DC motor controller and stepper motor driver. Separate logic supply to reduce dissipation. L293D includes the output clamping diodes for protections.

Specifications

  • Motor/Logic supply 5 to 36 V
  • Logic controls input 7 VDC max
  • Inhibit facility/enable
  • High Noise immunity
  • Over temperature protection
  • Capable of delivering output current up to 600 mA per channel
  • The control/interface lines are accessible with Berg connector
  • Header connector for motor and supply connection
  • PCB dimensions 36 mm x 24 mm

L293D DC Motor Driver Module – [Link]

Dual Motor L298 H-Bridge Motor Control

IMG

Dual Motor L298 H-Bridge Control project can control two DC motors connected to it. The circuit has been designed around popular dual H-Bridge L298 from ST. This circuit has current sense resistors for both H-bridges to provide voltage which enables this board to use in stepper motor applications.

Specifications

  • Motor supply : 7 to 46 VDC
  • Control Logic Supply : Standard TTL logic level
  • Output DC drive to motor : up to 2 A each
  • Current Sense Output available
  • Enable and direction control pins available
  • External diode bridge for protection
  • Heat-sink for IC
  • Power-On LED indicator
  • Screw terminal connector for easy input supply (PWR) / output (Motor) connection
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 61 mm x 63 mm

Dual Motor L298 H-Bridge Motor Control – [Link]

DC Motor IR2104 H-BRIDGE

IMG_0297

H-Bridge has been designed around IR2104 IC from international Rectifier. The board has been made mainly for DC-Motor application. The driver can handle load up to 8-10Amps. I have tested this board with 36V DC supply . The circuit uses N Channel IR540 MOSFETS from international rectifier. IR540 requires large heat sink for 10Amps load.  Board has shunt resistor to provide voltage proportional to current flowing through load. This can be later amplify and connect it to microcontroller.

Features

  • Motor DC Supply 36V DC (Screw Terminal Connector)
  • Logic Supply 12V DC
  • Load 8-10Amps (Screw Terminal Connector)
  • Header Connector for Inputs (7 Pin Header Connector)
  • On Board Shunt Resistor for Current feedback
  • PWM Frequency 10 to 20 KHz
  • Duty Cycle 0-99%
  • Logic Pins support 3.3V, 5V, 12V (Inputs and PWM)

DC Motor IR2104 H-BRIDGE – [Link]

DRV8871 – 3.6A Brushed DC Motor Driver

DRV8871

The DRV8871 is a brushed-DC motor driver for printers, appliances, industrial equipment, and other small machines. Two logic inputs control the H-bridge driver, which consists of four N-channel MOSFETs that can control motors bidirectionally with up to 3.6-A peak current. The inputs can be pulse-width modulated (PWM) to control motor speed, using a choice of current-decay modes. Setting both inputs low enters a low-power sleep mode.

DRV8871 – 3.6A Brushed DC Motor Driver – [Link]

Open Inverter, an open source micro-solar inverter

open_inverter-600x543

Ken Boak has been working on an open source micro-solar inverter project:

We wanted to make a design that uses readily obtainable N-type FETS and an Arduino (more strictly a ATmega328P-PU on a breadboard) to generate the PWM signals and provide simple circuit protection, and load sensing. With the PWM signals generated in firmware it can easily be modified for 50Hz or 60Hz operation, either 115V or 230V operation and a wide range of battery input voltages.
We imagined that the final design could consist of an Arduino, an “Inverter Shield” containing FETs and driver ICs configued in a H-bridge and some voltage and current monitoring circuits. To make the inverter a 12V or 24V battery (or PV panel) and a 12V (or 24V) torroidal transformer would be added.

Open Inverter, an open source micro-solar inverter – [Link]

Matchbox car

IMG_20150808_132911-600x450

Shane has been working on making small robots and made a prototype of a matchbox car, a robot car that fits inside a matchbox:

This build consists of a tiny DC motors ripped from a pair of 9g servos, a h-bridge motor controller, an el-cheapo 8 bit pic and a 100mAh 3.7V LiPo battery.

Matchbox car – [Link]

Power playground project

PP-1.preview

Spacewrench over at Dorkbotpdx published a new build, a Power Playground project:

It’s a PMOS/NMOS H-Bridge with FETs that can handle 3 amps or so, plus a SPI current sensor, some switches & a rotary encoder (not stuffed yet), and a 7-segment display, all controlled by a Teensy-3.1 running FreeRTOS.

I made this because I’m always running into battery, power, inductor and transformer issues I don’t have any experience with. The idea is to use the H-bridge configuration and current sensors to experiment with moderate-current PWM, motor control, power-line synchronization, battery charging and discharging, etc.

[via]

Power playground project – [Link]

Rohm H-Bridge Evaluation Board

This evaluation board has been developed for ROHM’s H-Bridge driver customers evaluating the BD62x2FP series. The BD62x2FP series can operate across a wide range of power supply voltages (from 3V to 32V max), supporting output currents of up to 2A. PWM signal control (20 kHz-100 kHz) or VREF control modes are used to vary motor rotation speeds.  ROHM’s ICs are complete with over current protection (OCP), over voltage protection (OVP), thermal shutdown (TSD) and under voltage lock-out (UVLO) protection circuits while also facilitating a low-power consumption design (10μA max).

Rohm H-Bridge Evaluation Board – [Link]