Tag Archives: Hardware

Octavo Systems Releases OSD3358-SM-RED Beaglebone Black Compatible Board

Octavo Systems back in 2017 released their OSD335x-SM System-In-Package device, a powerful ARM Cortex®-A8 SIP-based package. The OSD335x-SM was a device of its class, measured at just 21mm x 21mm, and the OSD335x-SM is the smallest AM335x processor-based module on the market today that still allows complete access to all the AM335x device I/Os including PRUs. The OSD335x-SM helps in removing the need for DDR routing, power sequencing, complex supply chains and even the need for building larger PCBs to accommodate several components.

Octavo has announced the availability of the OSD3358-SM-RED platform.  The OSD3358-SM-RED platform is the official Reference, Evaluation, and Development platform for the OSD335x-SM SiP family. It is designed by Octavo Systems to allow users to evaluate the OSD335x-SM SiP for their application quickly.

The OSD3358-SM-RED is fully designed around the OSD335x-SM SiP at its core, thus inheriting all the features of the SiP device. The OSD335x-SM integrates a powerful 1GHz Texas Instruments Sitara AM335x processor, DDR3 Memory, two power supplies, and passives into a single easy to use package.  The 256 Ball BGA is 60% smaller than an equivalent design using discrete devices, making it the smallest ARM Cortex-A8 system implementation.

The development board comes included with a Gigabyte Ethernet (10/100/1000 Ethernet), a whopping 5 USB 2.o ports (comes with 4 USB hub ports and 1 micro USB client port), a micro HDMI for display, and two 46 pin expansion headers which makes it compatible with the Beaglebone ecosystem. The OSD3358-SM-RED has a 16GB eMMC on board and a microSD card interface.

The board also adds some onboard sensors providing a possible real-world case study. It comes with a 9-axis IMU that provides acceleration, gyroscope, and magnetometer data; a barometer to provide altitude; and a multi-channel temperature sensor.

Even though the SM-RED shares some compatibility with the BeagleBone it has no onboard WiFi and Bluetooth, but there’s an Ethernet port, and unlike the BB Black and other BeagleBone variants, it’s a GbE port. You also get 16GB eMMC compared to 4GB on the other BeagleBones.

The following are the specifications for the OSD3358-SM-RED:

  • Processor  — TI Sitara AM335x (1x Cortex-A8 @ 1GHz)
    • PowerVR SGX530 GPU
    • 32-bit 200MHz Cortex-M3 based programmable real-time units (PRUs)
  • Memory —  512MB DDR3 RAM
  • Storage — 16GB eMMC
    • microSD slot with card pre-installed with Debian and drivers
  • Display — Micro-HDMI port
  • Networking — 10/100/1000 Ethernet port
  • Other I/O:
    • 4x USB 2.0 host/device ports
    • Micro-USB client port
    • UART and JTAG
    • 2x BeagleBone Black Cape compatible expansion connectors
  • Other features — 9-axis IMU
    • Barometer and temperature sensors
    • 4x LEDs
    • TPM and secure NOR (currently not supported)
  • Power — 5V input
    • LiPo battery connector
    • Power and reset buttons
    • PMIC (via OSD3358 SiP)
  • Dimensions – 108 x 54 x 32mm
  • Operating system — Debian Linux

The OSD3358-SM-RED platform comes pre-loaded with a Debian Linux distribution complete with driver libraries for the different sensors on the board. All of the design files are freely available and can be used as a known good starting point for new designs. The OSD3358-SM-RED is available from Octavo Systems, Digi-Key, and Mouser for $199. More information may be found on Octavo’s OSD3358-SM-RED product and shopping page.

Top Funding Platforms For Hardware Based Projects

In the last few years, we have seen that the Makers’ Movement is growing quite strong, more makers, innovators, and hardware startups are beginning to come up. We saw back in 2015, the most famous hardware prototyping board “The Arduino” is now assembled in the USA as compared to it being manufactured only in Italy, this not only increases the number of Arduinos but also broadens up the whole hardware ecosystems. Remember Pebble Time? The guys that broke the Kickstarter record, they received $1 million in 49 minutes, breaking a current record, and became the most funded Kickstarter to date, reaching $20.4M dollars all the way to its deadline, from over 78,741 backers.

It’s one thing to have an idea, and it’s another thing to get it to people that need it. One of the challenges of getting a crafted idea to users is “Funds,” you need quite some level of funds to mass produce your product and sell it out to users. While the big corporations have the necessary funding and resources, most hardware projects are developed by individuals or small startups and don’t necessarily have such funds available. Projects that are just starting out sometimes need a financial boost to get things going, and most won’t get backing from a VC or angel investor the first time, but perhaps crowdfunding platforms could help here. Crowdfunding is where you get a lot of people to invest in your idea, rather than finding one person to come up with everything you need.

In this post, I will highlight some of the go-to platforms to get funding for your hardware projects and boards easily. Note – I am not affiliated with any of these platforms (at least for now).


Kickstarter is the most well-known name in crowdfunding and arguably the most active platform, raising over $2 billion since its launch in 2009. Kickstarter is geared more toward creative projects like a new album or writing a book, as well as products and inventions like a personal single-wheel vehicle or a pocket-sized solar charger.

Kickstarter has been one of the significant go-to platforms for hardware-focused products, and we have seen a lot of projects that came to life as a result of there fully funded campaigns on Kickstarter. Kickstarter favors creative project from wearables, smart glasses, drones to robots have been funded on Kickstarter.

Kickstarter isn’t geared towards individuals that have a product they want to release but startups/companies that can manage the whole product cycle and value chain. So, if you have a working product (an MVP preferable and not just a prototype) Kickstarter might be the platform to get the money rolling.

Here’s another vital caveat with Kickstarter: If you don’t raise 100% of your goal, you get none of that cash. Your project needs to be 100% funded for you to collect that money. If you meet your goal? Kickstarter has a 5% fee, and the payment processor will charge an additional 3-5 percent.


IndieGoGo is another familiar crowdfunding platform which shares similar traits with Kickstarter. Even though Indiegogo can be used for all sort of projects from profits to non-profits, you can still fund your focused hardware projects on them, and quite many hardware projects have been funded here.

One major difference between Kickstarter and Indiegogo is the funding flexibility. Kickstarter requires you to reach your target to get the funds but IndieGoGo offers flexible funding, which means you get to keep the funds you raised, even if you didn’t reach your goal, of course, this comes at a price of an increased fee. The fee for either is 5% (fixed and flexible), but if you don’t hit your goal with a flexible funding campaign, you’ll pay a higher fee (which is reportedly 9%). There’s no fee for a fixed funding campaign if you don’t hit your goal. And, of course, there will be additional fees (usually around 3%) from payment processors.

IndieGoGo might be your go-to platform if you aren’t sure of getting the exact money you need and feels any funding will do.


CrowdSupply is a crowdfunding platform that has a high preference for hardware projects and boasts “over twice the success rate of Kickstarter and Indiegogo.” On crowd supply, you can create a campaign for any hardware projects, from raw IoT board to a full consumer product. CrowdSupply favors creative projects as well as individuals built projects.

CrowdSupply is my recommended go-to platform for makers, tinkers, and innovators out there with the likelihood of getting your creative project funded very high. Get started with CrowdSupply here.


Tindie is a marketplace for makers to fund and sell their hardware creations. It is a DIY Hardware MarketPlace and not a crowdfunding platform, unlike others. Tindie pride itself as a hub where hardware makers can quickly sell their products or prototypes without the overhead required in creating a crowdfunding campaign.

Tindie is excellent if you have a customized hardware creation you want to sell out to the hardware community, it could be a new shield you just built or an addon for the raspberry pi that adds some extra functionality.

Final Words

Going by numbers alone, hardware projects should be a win-win proposition for both entrepreneurs and crowdfunding platforms. Seven of the top ten most-funded projects on Indiegogo are hardware projects. Getting your hardware product to markets is now easier than ever before and now could be the best time to get funded. If you have something nice, chances people will fund you are high if you use one of these platforms.

Artila M-X6ULL is a Linux-ready Cortex-A7 SoM with a Real Time patch

Artila Electronics, a professional in development and manufacture of ARM-based embedded Linux systems, has released a SODIMM module M-X6ULL based on NXP i.MX6ULL processor family. The new M-X6ULL is designed to meet the needs of many general embedded applications that require power efficient, high performance and cost optimized solution, as well as embedded systems that require high-end multimedia applications in a small form factor.

Artila’s “M-X6ULL
Artila’s M-X6ULL

The i.MX 6ULL is a power efficient and cost-optimized processor family featuring an advanced implementation of a single Arm® Cortex®-A7 core, that can operate at speeds up to 900 MHz. The i.MX 6ULL application processor includes an integrated power management module that reduces the complexity of an external power supply and simplifies power sequencing. Each processor in this family provides various memory interfaces, including 16-bit LPDDR2, DDR3, DDR3L, raw and managed NAND flash, NOR flash, eMMC, Quad SPI and a wide range of other interfaces for connecting peripherals such as WLAN, Bluetooth®, GPS, displays and camera sensors.

The Artila NXP i.MX 6ULL is clocked up to 800MHz and is Linux ready. The module is notable for offering Linux 4.14 with the PREEMPT_RT real-time patch which could make the module find applications in areas that needs real-time interaction. The SODIMM styled ultra-compact module measures only 68 x 42mm. The module provides support for interfaces like CAN, UART, USB, SD, LCD, GPIO, SD, Ethernet, and some others which are accessible through the module’s 200-pin expansion connector. The module ships with 512MB of DDR4 RAM, a 4GB onboard eMMC, and a 16MB NOR flash. It provides one 24bits digital parallel display interface that supports max 85MHz display clock and up to WXGA (1366 x 768) at 60Hz, a touch controller that can support 4-wire and 5-wire resistive touch panel. The module is 5V rated and consumes about 0.75 Watts.

Artila provides software packages such as PHP, Python, Perl, Node.js, and Node-RED which are available for free and the Linux BSP includes GCC 6.2.x + glibc 2.24, U-Boot, X11 GUI engine, and more. These software packages can be updated through the Artila repository by issuing the standard Linux apt-get command. The module can be booted either from the onboard eMMC or an external SD card.

Just like every other SoM board maker, Artila is providing an optional M-X6ULL starter kit to go with the module. The starter kit expands out the module microSD slot, dual Fast Ethernet ports, a USB2.0 host port, and micro-USB ports. The kit is further equipped with a 24-bit LVDS interface with resistive touch support and an audio output jack.

The specification for the starter kit is shown below:

i-MX6ULL Starter Kit Specification

The major target applications of this module are Industrial HMI & Access Control, IOT gateway, Industrial control & automation and Test and measurement. Attila’s M-X6ULL SoM is available for order but the price is not disclosed yet.

Emcraft’s Unveils a i.MX 8M System-On-Module and a $349 Starter Kit

Emcraft, which is known primarily for its work in porting uClinux to various high-end MCUs recently unveiled its NXP i.MX 8M System On Module (SOM) which is Linux driven and a Starter Kit for the i.MX 8M SoM. The starter kit gives Gbe, HDMI 2.0, USB 3.0, USB Type C and a Raspberry compatible 40 pin connection.

Emcraft i.MX 8M System-On-Module (SOM)

The 60 mm * 80 mm module is a mezzanine module that supports 512MB to 4GB of DDR3L or LPDDR4 RAM, up to 64GB eMMC 5.0 flash, a PMIC interface that supports WiFi-ac and Bluetooth 4.2 module with dual U.FL connectors. The i.MX 8M features up to four Cortex-A53 cores at 1.5GHz and a Cortex-M4 core for low-power and real-time operation.

The Emcraft i.MX 8M System-On-Module (SOM) supports only the quad-core version of the dual-core model. The i.MX 8M SoM hooks up to the Carrier board through a four 80-pin connectors. The i.MX 8M SoM starter kit is made up of two major items:

  • The i.MX 8M System On Module (SOM-IMX8M).
  • The development baseboard (IMX8M- SOM -BSB).

The i.MX 8M SoM Starter Kit extends out the features of the i.MX 8M SoM. The board features GbE, USB Type-C, USB 3.0 host, and micro-USB serial console ports. It also comes with some media interfaces like an HDMI 2.0 port, dual MIPI-CSI camera interface, and an audio I/O jack. The BSB baseboard also comes with a Raspberry Pi compatible 40 pin header, a 12V jack, dual Light Emitting Diodes (LEDs), an IR receiver, reset and multiple push buttons and a boot selection switch. The board supplies the Arm JTAG and Arm JTAG+ETM debug connectors. The block diagram also shows a Peripheral Component Interconnect Express-based M.2 expansion socket, a Real Time Clock with battery holder, and a Secure Digital (SD) slot.

Starter Kit

Emcraft supports Linux as an operating system for the i.MX 8M Cortex-A53 processor core. All i.MX 8M System-On-Modules come preloaded with Linux and U-Boot. Full source files of U-Boot and the Linux BSP are provided for free download, along with the Linux distribution and cross-development environment. Both U-Boot and Linux are royalty-free making it easy to incorporate into commercial products.

The Starter kit is available for pre-orders online for $349 and has shipping scheduled for May 2018. More information about the i.MX 8M System On Module and the Starter kit can be found on the product page. You can find documentation about setting up the Linux environment for the Emcraft i.MX 8M System-On-Module (SOM) here.

CADLAB.io – A True Version Control For Managing Hardware Projects

Version control is a system that records changes of a file or set of files over time so that you can recall specific versions later. Version control was developed to help teams work on tasks together in a more collaborative way. In the last few years, version control platform has often been focused on software-based projects. Git is the preferred version control tool for most developers since it has multiple advantages over the other systems available and it’s the backbone of the famous GitHub.

CADLAB.io Version Control

So, version control tools are great for software tasks, but what about Hardware? Unlike open software, which has popular collaborative tools like Git (and websites built on it, like GitHub), Subversion, and Mercurial, hardware has no system for version control. Github has been used in the past for hardware project sharing and even offer some level of version control (very limited, hardware design are displayed as an image). For software, version control is pretty straightforward, since you can just show the “diffs” between two files as highlighted text. But how do you do that for hardware, where the files tend to be in binary formats, which could be proprietary sometimes? Cadlab.io from DevEngineering brings a change in this space.

CADLAB.io is a cloud-based hardware development platform which provides engineers and makers with a version control system and collaboration tools for hardware design. Based on Git, it allows you to keep native PCB design files in a repository and view, compare and comment on any part of a PCB in a browser. Cadlab is designed for hardware designs and not just comparing design images, but truly compare PCB and schematics designs.

Just like Github, CADLAB.io supports public and private projects. CADLAB allows users to create an unlimited number of public projects for various hardware project and even upgrade those project to private mode only, but this comes at a cost. CADLAB currently supports only Autodesk EAGLE PCB designs with promises of adding more support to other PCB design software like KiCAD, Altium, OrCAD, and others. CADLAB can render all your Autodesk Eagle PCB schematics and layouts from version 6 upwards. You can compare design iterations, find the necessary ones quickly, download it and continue working on it in the CAD application.

CADLAB provides support for adding comments and even annotations to a design file. Annotations can be added to pad or a block of wires, and this will profoundly foster good collaboration between teams and also make hardware project to be easily scalable. Github users are not left behind, CADLAB integrates with GitHub. Existing GitHub design can be viewed with CADLAB and users are allowed to even upload their files directly from Github. With a CADLAB Chrome plugin, users can see their design files live while working on Github.

Despite the robust features with CADLAB, it doesn’t yet support merge request and forks, a primary functionality of version control and open source project. Merge requests and forks will allow people to contribute to a public project. CADLAB.io is currently available in a three subscription package. A free plan for public only projects, an Individual plan that costs $6 per month, and a Company plan that costs $15 per month. You can find more information about the pricing here.

Raspberry Pi Plus Cloudio – A Personal IoT Computer with Drag and Drop Programming

Everybody loves the Raspberry (at least the makers does) and has seen several applications from being blasted to space or powering a self-driving car. Raspberry Pi in its natural state is an ideal platform for IoT development mostly due to its connectivity interfaces like the Bluetooth, WiFi, and Ethernet but no significant development has been done in this space apart from some pretty hacks in the last years. GraspIO in partnership with Farnell Element14 distributor has released the GraspIO Cloudio, a Raspberry Pi add-on board with Drag and Drop programming interface for full suite IoT applications development.
GraspIO Cloudio
Cloudio offers the ability to do drag and drop programming instead of the conventional text-based python programming and is supported on iOS and Android devices. So with just an Android phone, iPhone or iPad, you can start programming and controlling your raspberry pi cloudio based applications. Cloudio incorporates Voice Assistant Capabilities, Internet of Things cloud service, sensor monitoring and dashboard, custom notifications, and even provides off the shelf support with the beautiful IFTTT (“If This Then That”) platform. With the integration of IFTTT, you can easily automate some actions like for examples – if an email is received then send sensor reading or feed the fish for a while, another interesting case is – if a weather forecast states there is a likelihood of rain then closes the cage. Cloudio also provides support for upload program to multi-board at once, a perfect option if you will be managing a large number of boards.
Cloudio and Raspberry Pi
At the heart of the Cloudio board is the Atmel 8-bit AVR Atmega32U4 controller and comes in a portable size that makes it compatible with Raspberry Pi 1/2/3/Zero and ZeroW. It comes with a 0.96″ OLED Screen, a display that can be used for displaying real-time sensor values, custom messages and even supports emojis. The board includes proximity, light and temperature sensors and an extra 3 ADX ports for interfacing with external sensors. The board consists of a proximity, light, and temperature sensors plus 3x ADC interfaces for connecting other sensors such as humidity and motion. With the Cloudio, you will never run out of 5V ports as it comes with three digital 5V output ports. Cloudio does not require any external power supply unit and gets its power from the underlying Raspberry Pi. Other features of the board are a mini 5V servo motor port, a buzzer, RGB LED and tactile switch.
According to Steve Carr, the Global Head of Marketing at Premier Farnell and Farnell element14, he says –
“The versatility of GraspIO Cloudio along with its ease of use will make it popular with makers and innovators in a wide range of application environments. Cloudio, when combined with a Raspberry Pi, is a Full Stack IoT platform meaning that you can programme IoT devices simply and quickly with drag and drop programming on a mobile app. The combination of built-in hardware facilities and access to innovative application software will make Cloudio a valuable addition to the range of tools available to developers of projects involving voice, motion, imaging and cloud interaction.”
Cloudio lets you build and create your own voice assistants using the inbuilt speech recognition feature to control it from your smartphone. It comes with an unlimited cloud service from GraspIO to connect, program, monitor, and manage Cloudio from your mobile device. It is preloaded with 50,000 free Cloud Calls and which a daily 100 non-cumulative calls will be credited to the user’s account for life. Cloudio drag and drop based approach to IoT development is undoubtedly going to help limit the barriers in commencing IoT development.

The GraspIO Cloudio Raspberry Pi add-on board is now available to purchase, priced at $40 and is exclusively manufactured and distributed by Premier Farnell UK Limited and other companies that are members of Premier Farnell Group. You can buy the Cloudio Raspberry Pi add-on board here.

SensiBLEduino – A full fledge ‘hardware-ready’ development kit for IoT and supports Arduino

IoT which translates to the Internet of Things has been a significant buzz for the last five years while disrupting major Industries (from Agriculture, Energy, Healthy, Sports and several others).

SensiBLEduino Development Kit

IoT adoption has seen rapid development in the makers’ world, with different makers and manufacturers producing various forms of boards, chips, software to facilitate quick IoT development. Boards like ESP8266 from Espressif System is used for rapid prototyping and a low-cost choice for Wi-Fi-based IoT applications. Israeli based IoT firm SensiEdge has launched the SensiBLEDuino, an off-the-shelf, hardware-ready development kit based on the open-source Arduino for rapid prototyping of IoT applications.

SensiBLE is a full fledge customizable solution for those wanting to design IoT products. It helps to fasten development with a variety of sensors onboard, along with Bluetooth LE 4.1 capabilities and a low-power ARM® 32-bit Cortex®-M4 CPU with FPU. Some of the main challenges when embarking on IoT product development are; what platform will I use? What sensors are available to achieve my goal(s)? How do I handle connectivity? What about the Cloud Platform to use, and so on. Developers or product designer always result in the use of several boards or modules to achieve this while also increasing the time to bring the product to life. The SensiBLE kit removes most of these fears; it combines hardware and software in tiny form factor to allow developers get their product to market quickly at lower development costs. (more…)

Adafruit Feather 328P – Arduino Uno on the Feather Family

Adafruit Feather 328P is the latest addition to the ever-expanding feather family boards manufactured by Adafruit. The Adafruit Feather development boards are a set of development boards made by Adafruit that can either be standalone, stackable or both. The feather boards all includes a LiPo battery connector, which will allow projects to easily be powered by LiPo batteries for on the go use.

Adafruit Feather 328P
Adafruit Feather 328P

The Adafruit Feather 328P is based on the popular Atmega 328P, the same processor that powers most Arduino maker boards especially the legendary Arduino Uno. With the Feather 328P, you can bring classic Arduino Uno code and even libraries to the Feather form factor. Measured at about 51mm x 23mm x 8mm (without the headers soldered in) and it weighs just 4.8g.

The Feather 328P is lightweight and a small form factor development board. At the heart of the Feather 328P is an Atmel ATmega 328P running a 3.3V and 8MHz. At 8MHz, the feather 328P can’t fully compete with the Arduino Uno which runs at 16MHz but is fair enough. The Feather 328P includes a 32KB of flash memory (storage memory), 2KB of RAM, and it uses the SiLabs CP2104 to give it a USB-to-Serial program which also provides users with some integrated debugging capabilities.

feather on a breadboard

The Feather 328P boards come without any headers soldered, so you have to solder yourself to start using it for prototyping. Unlike the Arduino Uno and some other Arduino board which are not fully breadboarding compatible, the Feather 328P fits perfectly into a breadboard and will be great for quick prototyping without the need for jumper cables.

Like other Feather development boards, the Feather 328P also includes a LiPo battery connector for any 3.7V Lithium Polymer batteries with a built-in battery charging. It will charge straight from the micro USB port, and you don’t necessarily need a battery to make it work, it will run just fine straight from the micro USB connector. The Feather will automatically switch over to USB power when it’s available making sure your project never goes offline as far you still got some juice in the battery though. You can also measure the battery voltage through one of the analog pins, the analog pin must not be connected to anything for this to work.

The following are some of the specifications of the Feather 328P:

  • Size  – 2.0″ x 0.9″ x 0.28″ (51mm x 23mm x 8mm)
  • Weight – 4.8 grams
  • Processor – ATmega328p @ 8MHz with 3.3V logic/power
  • Power –
    • 3.3V regulator with 500mA peak current output
    • Built-in 100mA lipoly charger with charging status indicator LED
  • USB serial converter (CP2104) for USB bootloading and serial port debugging
  • GPIO –
    • 19 GPIO pins + 2 analog-in-only pins
    • 6x PWM pins
  • Connectivity –
    • Hardware I2C, SPI.
    • For UART devices, should use SoftwareSerial
  • Others –
    • 8 x analog inputs (two are shared with I2C)
    • Pin #13 red LED for general purpose blinking
    • Two LEDs for serial data RX & TX
    • Power/enable pin
    • 4 mounting holes
    • Reset button

The Feather 328P comes with an extra prototyping area to add some couple of components without using a breadboard. The Feather 328P is available for purchase and priced at $12.50, you can buy now online at Adafruit Store. To find out about the other feather boards, check them out here.

Asus Tinker Board S is a Raspberry Pi Competitor at $79.99

Asus, the Taiwanese computer and electronics household name, in February last year entered into the maker’s world with their introduction of the original Tinker Board. The Original Tinker Boards was believed to out-sit the household Raspberry Pi, even though the original tinker board was way better than the Raspberry Pi in all aspect of hardware functionality, it was lacking in the software and community department. Raspberry Pi is great not for it’s easy to use hardware but mostly for its community. In the maker’s world, the community is the most important thing and this is where Raspberry Pi and the like of Arduino has excelled excellently.

The Asus Tinker Board S

Fast forward to 2018, Asus is back with a new and expected more powerful board called the “Tinker Board S”.  The new and improved Tinker Board S is a single board computer (SBC) that offers greater durability, better stability and an overall improved user experience for DIY enthusiasts and makers everywhere.

Announced at the CES 2018, the Tinker Board S is a single board computer that looks like the Raspberry Pi form factor, but with an overall improved board. As with the original Tinker Board, the Tinker Board S comes in a flashy looking dark board. The S board is equipped with the same Rockchip RK3288 quad-core cortex processor on the original Tinkerboard running at 1.8Ghz, compared to the quad-core 1.2GHz Broadcom processor in the Raspberry Pi 3.

The Tinker Board S comes with a lot of built-in storage and comes with a whopping 16GB of eMMC storage, enough to install an Android or Linux operating system and still have free space left. The S board also includes a microSD card slot, so you can always increase the storage as you like. The S board has 2GB of RAM memory based on the faster DDR3 technology, a double of the 1GB of the Raspberry Pi 3, and the slower DDR2.

Tinker Board S Specs

Like ASUS’ previous board, the new Tinker Board S has a 40-pin GPIO color-coded header block compatible with the Raspberry Pi. and comes with 4 USB 2.0 ports. For better user experience, Tinker Board S is HDMI-CEC-ready for complete video entertainment, with which you can control the hacker board and TV with a single remote. It can handle a 4K display at 30fps using the onboard HDMI jack.

The Tinker Board S also features a Gigabit Ethernet for internet and network connectivity. Just like the Raspberry Pi 3, the S board comes integrated with an onboard Wi-Fi and Bluetooth 4.0. The S boards include an integrated IPEX antenna header to which allows for easy antenna replacement or upgrades.

The Tinker Board S is the latest in a long line of more powerful alternatives to the Raspberry Pi, and if you are just getting started with single board computers (SBC), the Raspberry Pi 3 is going to be the best choice. The S board is expected to be available in early 2018 with a price tag of $79.99. For more information about the Asus Tinker Board S, visit the official product page here.

RDA5981 is a $1 Fully Integrated WiFi Chip with an ARM Core

RDA’s RDA5981 is a fully integrated low-power WiFi chip from RDA Microelectronics. RDA5981 is a fully built WiFi chip highly intended for applications in the areas of a smart home, audio applications and IoT applications. The RDA5981 is being used in devices running Baidu DuerOS, the Chinese alternative to Amazon Alexa or Google Assistant.

RDA5981 WiFi Module

During the annual event of China’s semiconductor industry IC China 2016, RDA Microelectronics announced the RDA5981 during the event with promises of it reducing the size, power consumption, development costs of a smart device.

The RDA5981A is a low power MCU with IEEE802.11b/g/n MAC/PHY/radio integrated into one chip. The RDA5981 is powered by the ARM Cortex M4 plus FPU/MPU core running at 160MHz speed, a high performing processor for that application type. It has up to 288KByte of internal SRAM and additional 160Kbyte SRAM for Wi-Fi stack and flash cache but with only about 192Kbyte available for the user. It has up to 8MB of Flash, 2x ADC with a 10bit resolution, 8x PWM (Pulse Width Modulation), 4x SPI (Serial Peripheral Interface) with a maximum clock frequency of about 20MHz, one I2C, 2x I2S, 2x UART and a total of about 14 GPIO Pins.

RDA5981 Block Diagram

Concerned about Security, the RDA5981 has an onboard hardware cryptographic accelerator supporting AES/RSA, and a True Random Number Generator (not the one you use software to generate), and lastly a CRC accelerator for improved performance. It includes an onboard TCP stack which could either support SSL, TLS or even both.

Unlike the ESP8266, one the maker’s favorite Wi-Fi module, the RDA5981 includes USB2.0 features.

RDA5981 A/B/C processor specifications:

  • CPU – Arm Cortex-M4 +FPU/MPU core @ up to 160 MHz
  • Memory –
    • Up to 448 KB SRAM for network stack and application
    • User available memory is 192Kbyte
  • Storage –
    • Up to 32Mbit SPI flash
    • Support 64M PSRAM expansion
  • Connectivity
    • WiFi
      • 2.4 GHz 802.11b/g/n WiFi up to 150 Mbps with 20/40 MHz bandwidth
      • WPA, WPA2, WEP, TKIP, CCMP security
      • STA, softAP, P2P, STA+softAp, STA+P2P modes
      • A-MPDU, A-MSDU, HT-BA
    • TCP/IP stack with SSL and/or TLS
  • Host Interfaces – SPI / UART (AT command set) / USB2.0
  • Peripherals – 14x GPIO, 2x UART, 2x I2S, 1x I2C, 8x PWM, 4x SPI, 1x SDMMC, 1x USB2, 2x ADC
  • Security –
    • Hardware crypto accelerator AES/RSA,
    • True random number generator (TRNG)
    • CRC accelerator
  • Misc – Watchdog, 16×16 bits eFuse configuration
  • Package – 5×5mm2 QFN package, 0.4mm pitch QFN-40
  • Temperature –
    • -30oC to +80oC
  • Voltage – 3.0V – 3.5V

The board can be programming with AT commands or using mBed and the company provides support for FreeRTOS and mbedOS5.1 for the chip. More information about the device specification can be found on the Electrodragon Wiki

The RDA5981A IC is expected to sell for around $1 and an RDA5981A Wi-Fi module is available for sale at $1.92 from Electrodragon.