Tag Archives: High Voltage

A Cost-efficient Super-Cascode SiC Switch

Coping with rapid technological advances and finding efficient energy solutions are the keys for development of power electronics of the future. A new research had been done in North Carolina State University about increasing the efficiency of high-power switches.

Silicon Carbide is a compound of silicon and carbon with chemical formula SiC. It is a wide bandgap (WBG) semiconductor, that allows devices to operate at much higher voltages, frequencies and temperatures than conventional semiconductor materials.

Researchers came up with a high voltage and high frequency silicon carbide (SiC) power switch that could cost much less than similarly rated SiC power switches. This research may guide to new applications in power converters like medium voltage drives, solid state transformers and high voltage transmissions and circuit breakers.

Semiconductor devices like the 15kV SiC MOSFET can lead to great potential applications in high voltage and high frequency power converters. However, these devices are not commercially available and their high cost displaces them from industry competition with other alternatives like the standard IGBT (Insulated-gate Bipolar Transistors) that are widely used, but in the same time they dissipate a lot of energy while switching on and off.

Loss Comparison between Silicon IGBT and SiC MOSFETs
Loss Comparison between Silicon IGBT and SiC MOSFETs

The new SiC power switch, called FREEDM Super-Cascode Switch, contains a series of 1.2kV SiC power devices to produce a 15 kV and 40 mA output that can transcend the 15 kV SiC MOSFET in ease of adoption and cost – since it costs only one third of the estimated high voltage SiC MOSFETs. In addition, this new switch is capable of operating in a wide range of temperatures and frequencies due to its proficiency in heat dissipation, which is considered an advantage in power devices.

FREEDM Super-Cascode SiC Switch
FREEDM Super-Cascode SiC Switch

Since there is no high voltage SiC device commercially available at voltage higher than 1.7 kV, as Alex Huang said – Progress Energy Distinguished Professor, he assures that this solution paves the way for power switches to be developed in large quantities with breakdown voltages from 2.4 kV to 15 kV.

The research took place in North Carolina State’s FREEDM Systems Center which is funded by National Science Foundation. This center’s mission is to modernize the electric grid and mold the generation of leaders by providing all the needed software and hardware tools, funds, and partnerships with Industries. This project had also participated in IEEE Energy Conversion Conference & Expo on September 2016 and it was presented by Xiaoqing Song, a Ph.D. candidate at the FREEDM Systems Center under Huang’s supervision.

More research projects in the same field can be reached at the FREEDM Systems Center website and further details can be found at the university website.

Via: ScienceDaily

Adjustable HV Power Supply for Stompbox


This SMPS can be powered with low input voltage, from 5 VDC to 15 VDC and provided adjustable Output Voltage: + 92 Vdc to +340 Vdc.

Can be used too, as power supply, for the Xenon Lamp, Nixie tube Clock, VFD display, Magic Eye, Neon, and too many others electronics circuits who need HV power supply to work. Is great to use with many models of Nixie tube. It can drive 6 Nixie tubes, in multiplex mode, from 180 to 200V. Powered with low voltage from 5VDC to 15 VDC. With this SMPS you can power 250V @ current of 7.5mA! *In all case above, important note, DC and AC filters must be improved, if is desired reducing present HF frequency noises at output! Another fact, informed before, the RF energy is irradiated as magnetic and electric field, shielded assembly could be necessary!

Adjustable HV Power Supply for Stompbox – [Link]

9V to 1kV DC/DC converter


Bob tipped us with his latest project, it’s a 9V to 1kV DC-DC converter using CD4011 IC to produce a square wave and a IRF530 transistor to drive the transformer.

Finally, I have made a new high voltage supply based on an inverter transformer and voltage doubler. It seems to be ok for this job, but it can be used in various other applications so I’m presenting it in a separate entry.

Warning! the device produces high voltage that can be lethal, if you want to build it, please take cautions.

9V to 1kV DC/DC converter – [Link]

Teardown & Repair of a Stanford Research PS350 5000V, 25W High Voltage Power Supply

In this episode Shahriar repairs a Stanford Research Systems Model PS350 5000V-25W High Voltage Power Supply. The unit continuously displays 2.5kV without the output being enabled and produces no output voltage. Verification of power supply voltages reveals the issue is linked to a disconnected 15V voltage regulator IC. After the repair, the output voltage is verified with both positive and negative outputs. The principle operation of the instrument as well as the Cockroft-Walton high voltage generator is reviewed.

Teardown & Repair of a Stanford Research PS350 5000V, 25W High Voltage Power Supply – [Link]