Tag Archives: ic

PAC1934 – Microchip’s New Power-Monitoring IC Measures Power With 99% Accuracy

Microchip recently developed a precision power-and-energy-monitoring chip – PAC1934. The PAC1934 is a four channel power/energy monitor with current sensor amplifier and bus voltage monitors that feed high-resolution ADC. It works in conjunction with a Microchip software driver that is fully compatible with the Energy Estimation Engine (E3) built into the Windows 10 operating system. The whole setup provides 99 percent accuracy on all battery-powered Windows 10 devices.

PAC1934 - Software power monitoring IC
PAC1934 – Software power monitoring IC

The PAC1934 enables energy monitoring with a wide range of integration periods from 1 ms to up to 36 hours. Combining Microchip’s PAC1934 chip and Microsoft’s E3 service can enhance the measurement of battery usage by different applications up to 29 percent. The sophisticated digital circuitry of the IC performs power calculations and energy accumulation precisely.

The PAC1934 is able to measure voltage accurately as low as 0V and as high as 32V. This ability lets the chip precisely measure power usage from the Central Processing Unit (CPU) as well as from software running on devices connected through a USB Type-C connector. The chip has features that could make it an essential part of future software upgrades. No input filters are required for this chip as it uses real-time calibration to suppress offset and gain errors.

The PAC1934 measures bus voltage, sense resistor voltage, and accumulated proportional power. Then stores the data in 16-bit registers for retrieval by the system master or embedded controller. The data transfer between the chip and the host system is performed over SMBus or I2C. The sampling rate and energy integration period can also be controlled similarly. Another important feature is its highly configurable controls, such as Active channel selection and one-shot measurements.

Most important features are:

  • 100 mV full-scale voltage sense range, 16-bit resolution.
  • Bidirectional or unidirectional options.
  • Wide bus voltage measurement range 0V to 32V, 16-Bit Resolution.
  • 1% power measurement accuracy.
  • 48-bit power accumulator register for recording data.
  • 24-bit accumulator count.
  • User programmable sampling rates of 8, 64, 256, 1024 samples per second.
  • 36 hours of power data accumulation at 8 samples per second.
  • 2.7V to 5.5V supply operation.
  • Separate I/O pin for digital I/O 1.62-5.5V.
  • I2C fast mode plus (1Mp/S) and SMBus 3.0.

For more information on this IC, visit Microchip’s website here.

Self-learning neuromorphic chip composes music

Peter Clarke @  eedesignnewseurope.com reporting:

Research institute IMEC has created a neuromorphic chip based on metal-oxide ReRAM technology that has the ability to self-learn. That self-learning has been applied to music making.

Self-learning neuromorphic chip composes music – [Link]

Reverse engineering the 76477 sound effect chip

Ken Shirriff has written an article on reverse engineering the 76477 “Space Invaders” sound effect chip:

Remember the old video game Space Invaders? Some of its sound effects were provided by a chip called the 76477 Complex Sound Generation chip. While the sound effects1 produced by this 1978 chip seem primitive today, it was used in many video games, pinball games. But what’s inside this chip and how does it work internally? By reverse-engineering the chip from die photos, we can find out. (Photos courtesy of Sean Riddle.) In this article, I explain how the analog circuits of this chip works and show how the hundreds of transistors on the silicon die form the circuits of this complex chip.

Reverse engineering the 76477 sound effect chip – [Link]

Inside the vintage 74181 ALU chip

Ken Shirriff writes:

The 74181 ALU (arithmetic/logic unit) chip powered many of the minicomputers of the 1970s: it provided fast 4-bit arithmetic and logic functions, and could be combined to handle larger words, making it a key part of many CPUs.

Inside the vintage 74181 ALU chip – [Link]

64-layer flash IC enables 1-Tbyte chips

Susan Nordyk @ edn.com writes:

Toshiba has added a 512-Gbit (64-Gbyte), 64-layer flash memory device that employs 3-bit-per-cell TLC (triple-level cell) technology to its BiCS Flash product line. This technology will allow the development of 1-terabyte memory chips for use in enterprise and consumer solid-state drives.

64-layer flash IC enables 1-Tbyte chips – [Link]

Bluetooth chip is only 4x4mm

by Julien Happich @ edn-europe.com:

Part of the Swatch group, EM Microelectronic announced what the company believes to be the world’s smallest Bluetooth chip. Offered in a 4x4mm QFN-28 package, in a WLCSP-21 or as a bare-die, the EM9304 is optimized for Bluetooth v4.2 low energy enabled products.

Ultra-thin, high thermal conductivity substrate integrates ESD protection

Clemens Valens @ elektormagazine.com discuss about a new IC substrate. He writes:

A new, ultra-thin ceramic substrate with an ESD strength of up to 25 kV – more than three times higher than the standard 8 kV of state-of-the-art Zener diodes – also features a high thermal conductivity of 22 W/mK. This is three times better than that of conventional carriers, even though the substrate is significantly slimmer. The new technology is especially well-suited for LED applications where the number and density of LEDs per unit continues to grow.

Ultra-thin, high thermal conductivity substrate integrates ESD protection – [Link]

ICStripBoard – PCB rapid prototyping tool

 

ICStripBoard is a innovative cheap tool to enable rapid prototyping of surface mount integrated circuits (IC’s) and allow their usage in prototype electronics projects.

Inline surface mount IC’s come in a Variety of packages which are different sizes and these Printed Circuit Boards (PCB’s) have been designed to accommodate the majority of IC’s. Available in the four standard IC pitches (space between IC pins) of 0.5mm, 0.65mm, 0.95mm and 1.27mm. These boards have been designed as long strips on thin (half the standard thickness) 0.8mm FR4 boards which can easily be cut to the correct amount of pins which the IC in question has. This allows the strip to be cut for multiple IC’s on multiple projects.

The cut pieces can easily be soldered and glued to other prototyping products and in conjunction with traditional through hole components can be used to create unique electronic prototypes. These boards will allow you to experiment with multiple IC’s without having to build PCB’s and is far cheaper than buying alternative break out boards due to the fact you cut them to size and the pattern repeats down the strip allowing this to be done multiple times. (more…)

LTC4380 Overvoltage Protection

Thomas Scherer @ elektormagazine.com writes:

When it comes to protecting sensitive circuitry from potentially damaging over-voltage spikes and supply surges we usually resort to networks of coils, capacitors, resistors and suppression diodes to iron out the transients. The LTC4380 low quiescent current surge stopper IC from Linear Technology goes about it in a different way; it looks out for over-voltage nasties and switches a fast N-channel external series-connected MOSFET to limit the surge. The chip is just 3 mm square and draws very little quiescent current.

LTC4380 Overvoltage Protection – [Link]

Inside the 74181 ALU chip: die photos and reverse engineering

A detailed die photos and reverse engineering of the 74181 ALU chip by Ken Shirriff:

What’s inside a TTL chip? To find out, I opened up a 74181 ALU chip, took high-resolution die photos, and reverse-engineered the chip.1 Inside I found several types of gates, implemented with interesting circuitry and unusual transistors. The 74181 was a popular chip in the 1970s used to perform calculations in the arithmetic-logic unit (ALU) of minicomputers. It is a moderately complex chip containing about 67 gates and 170 transistors3, implemented using fast and popular TTL (transistor-transistor logic) circuitry.

Inside the 74181 ALU chip: die photos and reverse engineering – [Link]