Tag Archives: ic

Infineon’s Security Chip

20150728020126_InfineonOptiga

by Martin Cooke @ elektormagazine.com:

Protection of Intellectual Property is a major issue as industrial systems become increasingly more interconnected. According to Bartol Filipovic, head of the Product Protection and Industrial Security department at the Fraunhofer Institute for Research “Most companies have no idea just how easy it is to copy their products, encrypted software is not enough to protect standard products or machine code. The software must be ideally stored inside protected hardware.”

Infineon has developed a broad range of semiconductor technologies to counter these growing security threats. The OPTIGA Trust E SLS32AIA hardware security device provides a cost effective solution for high value goods. It forms part of the OPTIGA™ Trust family high-security solution for industrial automation systems, smart homes, consumer and medical devices. The OPTIGA™ Trust E provides enhanced protection of services, business models and user experience. Based on its 1-way authentication mechanism, it uniquely identifies objects and provides protection of Public Key Infrastructure (PKI) networks.

Infineon’s Security Chip – [Link]

Site enables detailed component comparisons

gpiomicsf2

by Sagar Savant @ edn.com:

Choosing components is a series of time-consuming tasks, from surveying the market for possible candidates to properly evaluating performance. As a hardware engineer who has worked in Silicon Valley for 10 years, I have spent significant time developing test plans and specs, building fixtures, and testing components. One of the reasons comparing components takes a long time is because you can’t always rely on datasheets to give you the information you need. The problem with datasheets is that they only tell you the story the vendor of the component wants. If an IC characteristic is better under specific conditions, you can be sure the vendor will showcase their components under those conditions.

Site enables detailed component comparisons – [Link]

Homemade breadboard

IMG_2108

by robertgawron.blogspot.com:

A breadboard can be also made at home, from one side, it will be more expensive than those on the markets, but for another side, it’s possible to add commonly used elements, like LEDs, switches, or other things, for example I added a precision IC socket that makes putting in and out of ICs much easier. Choosing what to put there is a bit like a making homemade pizza, one can put anything he likes (and what he has currently in the fridge).

Homemade breadboard – [Link]

 

Ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent

19,929 

0

1-ultralowpowe

by Larry Hardesty @ phys.org

The latest buzz in the information technology industry regards “the Internet of things”—the idea that vehicles, appliances, civil-engineering structures, manufacturing equipment, and even livestock would have their own embedded sensors that report information directly to networked servers, aiding with maintenance and the coordination of tasks.

Realizing that vision, however, will require extremely low-power sensors that can run for months without battery changes—or, even better, that can extract energy from the environment to recharge.

Last week, at the Symposia on VLSI Technology and Circuits, MIT researchers presented a new power converter chip that can harvest more than 80 percent of the energy trickling into it, even at the extremely low power levels characteristic of tiny solar cells. Previous experimental ultralow-power converters had efficiencies of only 40 or 50 percent.

Ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent – [Link]

 

High-speed comparator cuts delays to 2.9 ns

6752

by Susan Nordyk @ edn.com:

Intended to drive logic levels of 3.3 V down to 1.8 V, the LTC6752 comparator from Linear Technology achieves fast rise and fall times of 1.2 ns and a toggle frequency of 280 MHz, making it one of the fastest CMOS-output comparators on the market. The device exhibits a propagation delay of only 2.9 ns and overdrive dispersion of just 1.8 ns. Jitter is 4.5 ps for a 100-mV pk-pk, 100-MHz sinusoidal input, and the outputs swing to within 200-mV of the rails with up to 8 mA of load current.

The LTC6752 offers five options in different packages with unique combinations of features, such as separate input and output supplies, low-power shutdown, output latch, adjustable hysteresis, and complementary outputs. Inputs extend beyond both rails, which is useful for single-supply operation. All five variants of the LTC6752 are capable of driving 3.3-V and 2.5-V logic. Three versions have separate input and output supplies, decoupling the input and output voltage levels and enabling them to drive 1.8-V logic.

High-speed comparator cuts delays to 2.9 ns – [Link]

CMOS Image Sensors Surpassing Moore’s Law

rcj_Image-Sensor_CMOS_3D_1

R. Colin Johnson @ eetimes.com:

PORTLAND, Ore. — Complementary metal oxide semiconductor (CMOS) imaging chips are becoming the industry’s leader in advanced process technology — instead of the traditional leaders (processors and memory) — thanks to strong demand for CMOS imaging chips in everything from smartphones to tablets to medical equipment and automobiles. Apparently, now the innovation surpasses Moore’s Law, says analyst firm Yole Développement.

Imaging was once done by film, but with the advent of solid-state sensors the technology breakthroughs seem to be growing exponentially, doubling with each new innovation (see slide 1), thus surpassing the traditional interpretation of Moore’s Law, argues Yole Développement (Lyon, France) in a new paper. Yole calls this effect “More than Moore.”

CMOS Image Sensors Surpassing Moore’s Law – [Link]

World’s 1st Spectrometer On-a-Chip

unnamed

by R. Colin Johnson @ eetimes.com:

The world’s first microelectromechanical system (MEMS) spectrometer on-a-chip was shown today at at Photonics West (San Francisco, February 10-12) by Si-Ware Systems (SWS, Cairo, Egypt with offices in La Canada, Calif.) Instead of transporting materials across sometimes great distances to be analyzed with a normal bench-top spectrometer, Si-Ware’s MEMS-powered spectrometer fits in the palm of your hand and thus can be taken to the material to be analyzed.

“Spectrometers are usually bench sized, so your have to take the object to the bench, but now with our MEMS sized you can can take the spectrometer to the object,” said executive vice president, worldwide marketing and business development of Si-Ware, Scott Smyser.

World’s 1st Spectrometer On-a-Chip – [Link]

Peregrine Semiconductor Ships Industry’s First True DC Switch

42020-Switch-Press_WEB

The UltraCMOS® PE42020 Integrates RF, Digital and Analog Functions in a Monolithic Die to Preserve Signal Integrity From DC to 8 GHz

Peregrine Semiconductor announces the availability of the UltraCMOS® PE42020, the industry’s first and only RF integrated switch to operate at true DC, zero Hz. This True DC RF switch features high power handling and maintains excellent RF performance and linearity from DC through 8000 MHz. A reliable alternative to problematic mechanical relays and micro-electro-mechanical systems (MEMS), the PE42020 is ideal for test-and-measurement (T&M) and automated-test-equipment (ATE) applications.

“For the first time, an integrated RF switch can operate at DC and truly cover the signal over the entire frequency spectrum,” says Kinana Hussain, Peregrine’s senior manager of marketing. “Until now, only mechanical relays and MEMS switches allowed DC pass through, and these products are plagued with reliability issues and lack of integration. Today’s release of the UltraCMOS PE42020 is another example of Peregrine solving the RF industry’s biggest challenges.”

Peregrine Semiconductor Ships Industry’s First True DC Switch – [Link]

3-D Gesture Control For Just $2 Per Device

SLIDE01--rcj_Microchip_gesture_EE-Times_Control_1

by R. Colin Johnson @ eetimes.com:

PORTLAND, Ore. — Any embedded device can made to recognize 3D gestures in mid-air, with the addition of the new GestIC from Microchip Technology Inc. (Chandler, Arizona). Microchip supplies all the chips, development software and know-how, it claims, to enable engineers to quickly make any embedded device smart enough to respond to commands drawn in mid-air with your bare hands.

Microchip believes its newest GestIC chip is the most cost-effective gesture detection system available today. “We not only provide the lowest-cost entry point for easy-to-use yet advanced 3D hand gesture recognition,” Fanie Duvenhage, director of Microchip’s Human Machine Interface Division told EE Times, “but by focusing our newest family member, the MGC3030, on the core gesture detection function, we make the software engineers job quick and easy too — using our free, downloadable Aurea graphical user interface (GUI) and Colibri Gesture Suite.”

3-D Gesture Control For Just $2 Per Device – [Link]

First germanium-tin semiconductor laser directly compatible with silicon chips

germanium-tin-laser-2

by Colin Jeffrey @ gizmag.com:

Swiss scientists have created the first semiconductor laser consisting solely of elements of main group IV (the carbon group) on the periodic table. Simply, this means that the new device is directly compatible with other elements in that group – such as silicon, carbon, and lead – and so can be directly incorporated in a silicon chip as it is manufactured. This presents new possibilities for transmitting data around computer chips using light, which could result in potential transfer speeds exponentially faster than possible with copper wire and using only a fraction of the energy of today’s integrated circuits.

First germanium-tin semiconductor laser directly compatible with silicon chips – [Link]