Tag Archives: Infrared

Passive Infrared Detector Circuit

The infrared (IR) is invisible radiant energy, electromagnetic radiation that we cannot see with our eyes, but we can sometimes feel on our skin as heat. The infrared light falls just outside the visible spectrum, beyond the edge of what we can see as red. Most of the thermal radiation emitted by objects near room temperature is infrared.

The circuit uses a MCP6032 microchip operational amplifier. The MCP6032 operational amplifier (op amp) has a gain bandwidth of 10kHz with a low typical operating current of 900nA and an offset voltage that is less than 150uV. The MCP6032 uses Microchip’s advanced CMOS technology, which provides low bias current, high-speed operation, high open-loop gain and rail-to-rail input and output swing. The MCP6032 operates with a single supply voltage that can be as low as 1.8V, while drawing less than 1uA of quiescent current. The MCP6032 is available in standard 8-lead SOIC and MSOP packages. It also includes, a PID20 integrated circuit and a few electronic components. The size of the output signal of PID20 is determined by the task at pins 3 and 4. The output signal at pin 3 is compared with a reference voltage equal to half the supply voltage. The reference voltage is taken from the voltage divider R2-R3-R4-R5. When approaching an object warmer than the surrounding environment, or to remove an object colder than the environment, the output voltage increases. The variation of the sensor output will be compared, the IC2a and IC2b, located voltage of 0.5V under and over voltage reference respectively. Depending on the output, one of the comparators calculates and activates T1.

This basic circuit is used in night-vision devices with infrared illumination, which allows people or animals to be observed without the observer being detected. The infrared light is also used in industrial, scientific, and medical applications as well as in consumer devices.

Passive Infrared Detector Circuit – [Link]



4 Channel Infrared (IR) Remote is a simple project using the popular  HT12A and HT12D encoder / decoder chips from Holtek.


  • Supply – Transmitter: 2.4 ~ 5 VDC, 5 V @ 20 mA & Receiver: 5 ~ 6 VDC, 5 V @ 50 mA
  •  Output – 4 Latched/Momentary TTL compatible outputs
  •  Crystal based oscillator for reliability of operation
  •  DIP switch selectable 8 bit address code
  •  LED output to indicate reception
  •  ON/OFF slide switch in the transmitter
  •  Power-On LED indicator in the Receiver / Transmitter
  •  High noise immunity
  •  Berg connector for interfacing of the board
  •  Four mounting holes of 3.2 mm each
  •  PCB dimensions – Transmitter: 61 mm x 47 mm & Receiver: 46 mm x 46 mm


DIY Infrared Remote Controls


by Jason Poel Smith @ makezine.com:

Halloween is the perfect opportunity to create fun special effects. When you want to be able to control props and effects remotely, one good option is to use an infrared remote control. In this project, I’ll show you some simple remote controlled effects that you can set up in your haunted house this year.

DIY Infrared Remote Controls – [Link]

Simple Infrared Barrier


by Maurizio @ dev.emcelettronica.com:

Although a remote control is not so difficult to design and build, there is an even simpler option: the IR barrier. This consists of a constant IR signal permanently going from an emitter to a receiver, both of them being in two different places (a few meters apart). When an obstacle comes in between the emitter and the receiver, the IR signal is blocked and the receiver senses that it is missing, flagging the event in an appropriate manner (figure 1).

The principle of operation is simple enough, and with most components taken off the shelf, it is easy to design the schematic. The IR element in the emitter is a simple IR LED. This behaves absolutely like any other LED, with the sole exception that it emits light in the infrared spectrum. The emitted light is thus invisible to human eye, but it is meant to excite the infrared receiving element on the other side of the barrier. One important element of this LED is the wavelength of the emitted light, of which we already know that is in the infrared spectrum.

Simple Infrared Barrier – [Link]

Controlling servo motor using IR remote control

by mohamed soliman @ instructables.com:

If you are looking for comfort and controlling your electronic devices remotely, you will find your need in this instructable.

In this instructable we will learn how to control a servo motor with remote control, this will give you a general concept on how to control remotely. You should know that the remote control sends Infrared(IR) signals, so we will learn how to receive and read these signals using Arduino.

Controlling servo motor using IR remote control – [Link]

‘Silver bullet’ – the Oscilloscope Infrared Receiver


AnalysIR have shared a simple technique for viewing the data from IR transmission on an oscilloscope:

The idea is to use a standard IR Led mounted into a BNC/RCA plug using a spare channel making an Oscilloscope infrared receiver. So we set about ordering the connectors, which arrived in the post today. Another way of looking at this device is as a ‘poor-mans’ IR receiver, but if you have an Oscilloscope to plug it into then maybe you are not so poor after all. The idea is to shine your IR remote control on to the IR Led while pressing a key which results in a small amount of current passing through the IR LED. This in turn creates a voltage differential across the terminals of the Led. For this to work well, you need to have the emitter of the remote control right up against the IR LED of the receiver.


‘Silver bullet’ – the Oscilloscope Infrared Receiver – [Link]

MAX44008 – RGB Color, Infrared, and Temperature Sensors

The MAX44006/MAX44008 integrate six sensors in two products: red, green, blue (RGB) sensors; an ambient light (clear) sensor; a temperature sensor; and an ambient infrared sensor with an I²C interface. These highly integrated optical sensors include a temperature sensor to improve reliability and performance.

The devices compute the light information with six parallel data converters allowing simultaneous light measurement in a very short time. The devices consume only 15µA (MAX44006) and 16µA (MAX44008) separately in RGBC + TEMP + IR mode, and also have the ability to operate from 1.8V/3.3V/5.5V supply voltage rails.

RGB Color, Infrared, and Temperature Sensors – [Link]

Irdroid – universal remote control for Android

Mr. Georgi Bakalski writes:

Irdroid is a universal infrared remote control for smartphones, tablets and other devices, working with the Google Android operating system.  To control your favourite TV, STB or DVD, you need to download the Irdroid APP for Android and to purchase a Irdroid module.

The Irdroid application is available for download from the Android Market and from Appslib (for android tablets) The biggest benefit of Irdroid is that it is compatible with the LIRC project in which database, there are a lot of supported equipment vendor’s some of the famous are Samsung, Sony, Motorola, LG, Panasonic, Philips and many, many more (see here – > http://lirc.sourceforge.net/remotes/).

Another benefit for the Public is that the Irdroid application is free, open source and the source code can be downloaded from http://www.github.com/irdroid

Irdroid – universal remote control for Android – [Link]

TMP006 infrared temperature sensor test

dangerousprototypes.com writes:

Today we did a quick test of the TMP006 infrared non-contact temperature sensor with an I2C interface. Point it at something and it measures the temperature. We were expecting a simple breakout board we could test with the Bus Pirate, but got full USB-enabled evaluation kits. To use the Bus Pirate with this board check out Joe’s tutorial. You might get this kit if you leave a comment on yesterday’s giveaway announcement (comments on this post will not be considered).

The evaluation kit has two parts: a USB module that presumably works with many different TI breakout boards, and the TMP006 sensor board. The sensor is only available in a BGA8 package, so a breakout board like this is the only way many people can use the sensor. It’s available from Digi-Key in 1s, so we could sell a simple breakout board if you’re interested.

TMP006 infrared temperature sensor test – [Link]

Circuit Skills – Infrared Light

Circuit Skills – Infrared Light @ MAKE… [via]

Infrared light may be invisible to the human eye, but its usefulness in the world of electronics is easy to see. From simple object sensors to wireless data transmission, IR emitters and detectors can be used in a variety of different ways. And their low cost and wide availability makes them a great choice for enhancing an electronics project.

Circuit Skills – Infrared Light – [Link]