Tag Archives: IoT

$10 Orange Pi 2G-IoT Competing With Pi Zero W

A new competitor to Raspberry Pi Zero W is just out! A new single-board computer by Orange Pi that is now available at AliExpress is competing against Pi Zero W, the Orange Pi 2G-IoT. Using this powerful SoC you can build a computer, a wireless server, games, musics and sounds, a speaker with Android, Scratch and a lot of other options since Pi 2G-IoT is open source.

The Orange Pi 2G-IoT has ARM Cortex-A5 32bit clocked at 1GHz with 256MB DDR2 RAM, 500 MB of on-board NAND storage to go along with an SD card slot for larger storage. It also has a CSI camera connector, WiFi, Bluetooth, an FM Radio and GSM/GPRS with a sim card slot on the bottom. It is pin compatible with Raspberry Pi’s almost standardized GPIO layout.

This $10 board is impressive especially the addition of GSM/GPRS, but it is not promised to kill other competitors in sales, even though it is a powerful little computer. Since the community of Raspberry Pi product is much more larger and more supportive, Orange Pi fails in engaging its audience with the products it makes.

Unfortunately, Orange Pi website is not updated yet to include its newest product. However if you are interested in getting one for yourself right now, head over to AliExpress to get your 2G-IoT for only $9.90 and to know more details.

Via Hackaday

Educational Biomed Shield for Arduino 101

Orlando Hoilett has built his new biomedical Arduino 101 shield: Biomed Shield, in order to allow students, educators, and hobbyists to learn about bio-medicine by monitoring heart rate, temperature, and other physiological metrics.

To build this shield he used the following components:

  • AD5933
  • MLX90614
  • Microchip Rail-to-Rail Input/Output Dual Op-Amp
  • MAX30101: a specialized integrated circuit that is able to perform reflectance photoplethysmography
  • Photocell
  • Thermistor
  • AD8227

Orlando measured heart beats using transmission photoplethysmography using MAZ30101, where a light shines through an extremity such as a finger and a detector measures the amount of light that passes through. When the heart pumps blood through the body,  a momentary increase in blood volume in the fingers happens. As a result, the amount of light that passes through the finger changes with this changing blood volume and is detected by the photodetector.

Bioimpedance Measurement

Bioimpedance is can be another class of bioelectrical measurements where we measure the impedance of the body instead of measuring the electrical signals produced by the body with the help of AD5934 impedance analyser chip. He is also measuring body temperature with the MLX90614 and measuring the amount of light using  a CdS Photocell.

Orlando built this shield for education purposes not as a medical device, and his work on this shield is still in progress. Follow his project on hackster.io to know more details and updates. You can check source files at Github.

Arrow’s New FPGA-Based IoT Maker Board

Arrow Electronics has introduced a new FPGA IoT Maker Board designed for end-to-end application development and optimised for cost. The Arrow MAX1000 board can be installed directly into a custom application or integrated on to a completely separate board.

It has been created for start-ups, universities or established equipment manufacturers who want a flexible, low cost FPGA platform for development, and the distributor can also supply customised variants.

At the heart of the maker board is a compact (11x11mm) Intel MAX10 FPGA with 8000 logic elements. This single chip includes integrated flash memory, a 1Msps 12bit ADC for analogue signals and a 3.3V power supply. Other features include embedded SRAM, DSP blocks, instant-on within milliseconds, and the ability to implement Intel’s NIOS II soft core embedded processor to perform microcontroller tasks. The board is equipped with an integrated Arrow USB-Blaster that enables the FPGA to be programmed directly from a PC and debugged using the free of charge Intel Quartus Prime Lite software.

The MAX1000’s power can be supplied as 5V from the USB port or via a separate pin. An Enpirion DC/DC converter with integrated coil then generates the 3.3V supply used on board. A MEMS oscillator provides the clock supply for the FPGA and the USB bridge. The low power, 3-axis acceleration sensor – also based on MEMS technology, can be used for position and motion detection, which are often required in IoT applications. External SDRAM can be used for storage of application data or as memory for the NIOS II processor.

Visit Arrow Electronics at www.arrow.com

Source: eeDesign Europe

Call for Makers: Hackaday Prize for Social Impact Projects

In patnership with Digi-Key, Supply Frame and Microship, Hackaday is calling for the curious, the creative, and the determined who are working to create social change in order to transform the world using their hardware and programming knowledge in addition to scientific, design, and mechanical abilities. This contest by Hackaday will encourage people innovate projects that can impact in people lives.

All you have to do is designing an impactful project that suits you, or collaborate with a team to do it. You can create things like reliable utensils for the disabled, a way for denizens to find clean drinking water in rural villages, refreshable braille displays for image text and a smart home to build a sustainable community. Or go beyond that and create something that has never been seen before. The purpose of the contest is to encourage participants to develop solutions to address technology issues facing humanity today.

With the global collaboration behind this contest, the total prizes will reach $250,000 and they will be divided as following: $120,000 goes to top 120 finalists ($1,000 each), $50,000 Grand Prize, $30,000 Best Product Prize, $20,000 2nd Place, $15,000 3rd Place, $10,000 4th Place and finally a$5,000 5th Place.

The first stage of the Contest will consist of five (5) Challenge Rounds. Participants may enter the Contest during any of the Challenge Rounds. Up to twenty (20) entries from each Challenge Round will be chosen to advance to the final round. Participants must complete the requirements for at least one (1) Challenge Round to be eligible for the final round. An entry may be submitted to any or all of the Challenge Rounds as long as it meets the requirements for each Challenge Round in which it is submitted. All submissions must be in English and must comply with any specified requirements.

Challenge Round 1: (Get Started: Design Your Concept.)

Entry period begins 7:01 a.m. P.D.T on March 20, 2017 and closes 7:00 a.m. P.D.T on May 1, 2017. This round is for showcasing your idea, hacks and logs and presenting the problem and how will your project solve it.

Challenge Round 2: (Internet of Useful Things :: IuT ! IoT)

Entry period begins 7:01 a.m. P.D.T on May 1, 2017 and closes 7:00 a.m. P.D.T on June 12, 2017.
Let’s take Internet of Things and make it practical for everyday life. Internet of Useful Things projects showcase a way to build a better tomorrow with the data you track and analyzeChallenge

Round 3: (Wheels, Wings and Walkers)

Entry period begins 7:01 a.m. P.D.T on June 12, 2017 and closes 7:00 a.m. P.D.T on July 24, 2017. This round is for building things that move, so the objective of the project is movement and support for things that help move humanity forward.

Challenge Round 4: (Assistive Technology)

Entry period begins 7:01 a.m. P.D.T on July 24, 2017 and closes 7:00 a.m. P.D.T on September 4, 2017.  Assistive technology projects ensure a better quality of life for the disabled and enhance learning, working, and daily living.

Challenge Round 5: (Anything Goes)

Entry period begins 7:01 a.m. P.D.T on September 4, 2017 and closes 7:00 a.m. P.D.T on October 16, 2017. No reservation, no theme, no topic. it is up to you to build on your idea that resonates with you and encompasses the spirit of making. Build whatever you think would benefit humans and the world we live in.

Best Product

To be eligible for Best Product the product must not have received more than $2,000,000 in funding within the life of the product. The sum of the product’s dimensions (width + height + depth) must total 36 inches (91.44 centimeters) or less. Best Product Final Round. By 1:50 p.m. P.D.T. on October 21, 2017

It’s time to leverage your talent and find solutions to address a problem facing humanity today. With a new technical design challenge every 6 weeks, you are expanding the frontiers of knowledge and engineering.

In order to bootstrap your project before completing your final application of this contest, Hackaday now gives you the chance to participate in a public voting and win up to $200. Just start your entry to get access to this.
Check the rules of the contest to make sure that your country is eligible to apply. Also check this page to know more details about the contest.

SimpleLink MCU platform Launched By TI For Scalable Product Development

Texas Instruments has announced the SimpleLink MCU platform, which is transforming the pace of product proliferation by uniting a robust set of hardware, software and tools under a single development environment.

The SimpleLink MCU platform offers a new software development kits (SDKs) based on a shared foundation of drivers, frameworks and libraries to enable scalability with 100% code reuse, which will reduce design time and allow makers to invest once and leverage across multiple products.

Developers will be able to choose from any of the 32-bit wired and wireless ARM-based MCU devices, making their products easily adapted to changing design or application requirements.

Features of SimpleLink SDK:

  • 100 percent code compatibility across SimpleLink MCU portfolio
  • TI Drivers offers standardized set of functional APIs for integrated peripherals
  • Integrated TI-RTOS, a robust, intelligent kernel for complete, out-of-the-box development
  • POSIX-compatible APIs offer flexible OS/kernels support
  • Encryption-enabled security features
  • IoT stacks and plugins to add functionality to your design

At the same time, TI also announced a new generation of Wi-Fi chips and modules, the SimpleLink Wi-Fi CC3220 wireless MCU and CC3120 wireless network processor.

The CC3220 features a 80MHz Cortex-M4 application processor, with 256k of RAM and 1Mbyte of flash, and a network processor with a hardware crypto engine. While the CC3220 supports Wi-Fi, the range will be extended in the coming months with devices supporting Bluetooth Low Energy and sub GHz communications, as well as a Bluetooth LE/sub GHz dual band part.

“Developers need to ask what needs to be protected, what they are protecting against and what are the exposure points. The CC3220 provides more than 25 security enablers to handle such aspects as key management and code protection.” Mattias Lange, general manager of embedded connectivity solutions, noted.

The SimpleLink platform delivers the most security features, along with the broadest connectivity protocol support and advanced analog integration, combined with the industry’s lowest power wireless MCUs. Bringing together all of TI’s low-power, connected ARM MCUs, including MSP432™ devices, the platform offers:

  • Bluetooth® low energy: CC2640R2F and CC2640R2F-Q1 wireless MCUs
  • Dual-band (Sub-1 GHz and Bluetooth low energy): CC1350 wireless MCU
  • Host MCU: MSP432 MCU
  • Sub-1 GHz: CC1310 wireless MCU
  • Wi-Fi: CC3220 wireless MCU, CC3120 wireless network processor

The CC3220 wireless MCU LaunchPad development kit [CC3220SF-LAUNCHXL] is available for $49.99 and the CC3120 wireless network processor BoosterPack plug-in module [CC3120BOOST] is available for $29.99. The CC3220 will be priced at $4.99 in 1,000-unit quantities.

SimpleLink Microcontrollers and Network Processors

You can learn more details and discover all SimpleLink processors, development kits and tools at the official website.

Meet BeagleBone Blue by Beagleboard

A new development board by BeagleBoard has been just unveiled: BeagleBone® Blue! The new board is dedicated for designers, hobbyists and professional featuring a Linux-enabled robotics controller complete with an extensive set of peripherals for building mobile robots quickly and affordably.

It is easier today to build your robot using BeagleBone Blue since it has onboard 2 cell (2S) LiPo battery management with charger and battery level LEDs, 8 real-time software controlled PWM/PPM outputs for 6V servo motors or electronic-speed-controllers (ESCs), 4 PWM-enabled DC motor drivers, 4 quadrature encoder inputs, on-board sensors including a 9-axis IMU and barometer, a wide array of GPIO and serial protocol connectors including CAN,4 ADC inputs, a PC USB interface, a USB 2.0 host port, a reset button, a power button, two user configurable buttons and eleven user configurable LED indicators.

BeagleBone Blue also has a pre-configured Wi-Fi access point that enables the process of connecting a battery and coding through a web browser. The board is compatible with Debian, ROS, and ArduPilot software, in addition to Cloud9 IDE on Node.js and other graphical programming options.

Key Features

  • Processor: Octavo Systems OSD3358 1GHz ARM® Cortex-A8
    • 512MB DDR3 RAM
    • 2×32-bit 200-MHz programmable real-time units (PRUs)
    • 4GB 8-bit on-board flash storage programmed with Debian Linux distribution
  • Connectivity and Sensors:
    • Battery: 2-cell LiPo support with balancing, 9-18V charger input
    • Wireless: 802.11bgn, Bluetooth 4.1 and BLE
    • Motor control: 8 6V servo out, 4 DC motor out, 4 quadrature encoder in
    • Sensors: 9 axis IMU, barometer
    • Connectivity: HighSpeed USB 2.0 client and host
    • Other easy connect interfaces: GPS, DSM2 radio, UARTs, SPI, I2C, analog, buttons, LEDs
  • Software Compatibility
    • Debian, ROS, Ardupilot, …
    • Graphical programming, Cloud9 IDE on Node.js
    • plus much more

Designed and developed in coordination with the UCSD Coordinated Robotics Lab, BeagleBone Blue will the best board to use  for your next robot!

BeagleBone Blue is available today from Arrow, Element14 and Mouser for around $80. For more details, visit https://beagleboard.org/blue.

Embedded IoT gateway, in a 17 x 25 mm footprint

Lantronix, Inc. has added the xPico 200 family of embedded IoT gateways that measure 17 by 25 mm, to rpvide secure Ethernet, Wi-Fi and/or Bluetooth connectivity for smart IoT solutions. by Graham Prophet @ edn-europe.com:

The xPico 200 series will feature enterprise security, networking intelligence, and pre-integration with Lantronix’s MACH10 management software platform in a compact footprint that enables the functionality of a powerful IoT device gateway to be integrated into machines not previously practical.

Embedded IoT gateway, in a 17 x 25 mm footprint – [Link]

Premier Farnell partners with Intel on IoT

Farnell element14’s tinyTILE is an Intel Curie module based board created by the distributor in partnership with Intel. by Julien Happich @ edn-europe.com:

Measuring only 35x26mm, the tinyTILE has been specifically designed for use in wearable and IoT designs for consumer and industrial edge products. It runs a software platform created specifically for the Intel Curie module and as such, can be programmed using either the Arduino IDE, Intel’s own software, Intel Curie Open Developer Kit (ODK), or Anaren Atmosphere, a cloud-based ecosystem that offers a complete end-to-end IoT solution.

Premier Farnell partners with Intel on IoT – [Link]

PingPong IoT Development Board – Connecting Hardware to the Cloud

Germany-based Round Solutions developed the PingPong, a powerful and flexible hardware platform for IoT and machine-to-machine (M2M) applications. The PingPong can be used for both wired and wireless connections. The modular hardware design can integrate custom-specific applications and communication standards into a single solution platform that has a very small form factor.

The basic hardware platform of PingPong has a 32-bit 200MHz Microchip PIC32MZ microcontroller unit (MCU) running C/C++ code. It supports RTOS or Real Time Operating System which is available as Open Source Software so that developers can adapt their applications individually and bring them to market more swiftly. The base board of PingPong has following features:

  •  A high-speed cellular module
  • A component for high-precision Global Navigation Satellite System (GNSS)
  • An Internet connectivity module
  • USB
  • CAN-Bus and many other components

    PingPong - The IoT Development Board RTOS 3G Version
    PingPong – The IoT Development Board RTOS 3G Version

One amazing feature is, the high-speed cellular module and the numerous interfaces can be controlled over the cloud. So, you don’t have to keep it wired all the time in order to control all those modules.

Technical Information:

Having an area of 85×52 mm², the PingPong is really tiny in size compared to its features. It has a booming 4 MB flash memory which is perfect for IoT purpose. PingPong beats other IoT modules with the wireless technologies it possesses – 2G, 3G, Galileo E1, GLONASS, and GPS. Supported bands(MHz) for cellular communication are 1800, 1900, 2100, 850, and 900. It communicates with other MCUs over I²C protocol which is widely used by almost all types of MCUs.

The greatest strength of PingPong is its expandability. The developer can overcome all the limitations of PingPong by adding a variety of expansion cards to the PingPong platform. Some examples of expansion cards are, wireless local area network (WLAN), Bluetooth, input/output (I/0), Iridium satellite communications, ISM/RF, SigFox, near-field communication (NFC), radio-frequency identification (RFID), and camera connectivity.

Applications:

  • Send and receive data: Pingpong offers different possibilities for sending and receiving data. Whether it’s wired over Ethernet or on the go with built-in GSM/GPRS module, PingPong does its job of exchanging data continuously.
  • Remote control: The PingPong can be used to control processes remotely via its outputs. Using the digital output with a relay can either enable or disable the power supply of an application.
  • Positioning: With its built-in GNSS and GPS module, the PingPong can also be used to determine position, motion, speed and acceleration.
  • Telemetry: The PingPong can be connected to a wide variety of sensors to process digital and analog measurements. Thus, for example, temperature values collected from a temperature sensor can be transferred via analog input to the PingPong.

And there are much more applications. From hobby projects to industrial development, sensor data collection to the smart home project – anywhere you can use this versatile board.

PingPong supports numerous expansion cards
PingPong supports numerous expansion cards

Important Links:

To learn more on this amazing IoT board, watch these three videos:


Conclusion:

The PingPong is a surprisingly powerful IoT module. It’s a developer’s dream. Having all these features in one package is truly outstanding. The feature of adding expansion cards makes it even stronger.

You can purchase your own PingPong from roundsolutions.com at €199.00. It may seem to be a bit overpriced, but it’s really not. Just consider the features you are getting in a single package and you’ll realize it.

Build Your Next IoT Device With GOBLIN 2

Designed for industry, makers, and visionary students, Verse Technology presents GOBLIN 2, its new card with the best of Arduino technology.

GOBLIN 2 is an IoT development board that unlocks the potential of the Internet of Things. It has been built based on the high-performance 16MHz ATmega328P microcontroller with a built-in SIM5320A connectivity module, and high accuracy 16-channel GPS.

The board contains 10 digital I/O ports half of them work as PWM, and 6 analog pins. It also integrates connectivity for each RS-485 protocol and voltage outputs of 24V, 5V and 3.3V that are ideal for industrial sensors or sensors with analog/digital signal.

The SIM5320A incorporates a dual-band HSDPA/WCDMA and Quad-Band GSM/GPRS/EDGE which gives GOBLIN 2 the connectivity with web servers through any cellular web. It also includes inlets/outlets to connect peripherals like keyboards, microphones, speakers, and thus exploit better the cellular network.

GOBLIN 2 Introduction video:

Technical specifications of GOBLIN 2:

  • Dimensions: 65.5mm x 82.2mm
  • Microcontroller: ATmega328P
  • CPU Speed: 16 MHz
  • Memory: 1KB EEPROM, 32KB Flash, 2KB SRAM
  • External Power Input: Micro USB 2.0 5V, Solar Panel 5V up to 200mA, 3.7V battery charger.
  • Power Output: 3.3V 300mA, 5V 3A, 24V 500mA.
  • Ports:
    • 6 ADC input – 10 bits resolution
    • 10 digital in/out – 5 PWM
    • 1 Micro USB Up to 115.2k baud
  • Connectivity:
    • SIM5320A with Header USB 2.0 interface
    • Header to Keypad, microphone and speaker for SIM I/O
    • High accuracy 16 channel GPS
    • RS-485 protocol 10Mbps Up to 256 nodes on the bus

GOBLIN 2 is powered by Li-Po battery of 3.7V to 4.2V, which can be charged through a solar cell or a Micro-USB thanks to its built-in battery management module. With an integrated voltage converter, GOBLIN can offer three output voltages; 24V to industrial sensors, 5v to charges like servomotors or related sensors with that kind of supply voltage and 3.3v for communication devices such a RF, Wi-Fi, sensors and others.

The board’s microcontroller can be programmed with Arduino IDE or Atmel Studio via micro USB, which also can be used for direct communication with the SIM5320A from the PC for a SIMCOM “AT+” command interchange.

Some of GOBLIN 2 applications:
  • Monitoring of industrial sensors with an RS-485 protocol.
  • Telemetry.
  • Vehicle monitoring.
  • GPS systems.
  • Weather monitoring.
  • Alarm system.
  • Automation applications.
  • SMS Applications, calls.
  • Monitoring of medic variables.
  • Remotes controls.

GOBLIN 2 is now available for $134 on Verse Technology store. Their github repository and documentation page contains some example codes and projects. This video shows the GOBLIN 2 in action: