Tag Archives: IoT

SimpleLink MCU platform Launched By TI For Scalable Product Development

Texas Instruments has announced the SimpleLink MCU platform, which is transforming the pace of product proliferation by uniting a robust set of hardware, software and tools under a single development environment.

The SimpleLink MCU platform offers a new software development kits (SDKs) based on a shared foundation of drivers, frameworks and libraries to enable scalability with 100% code reuse, which will reduce design time and allow makers to invest once and leverage across multiple products.

Developers will be able to choose from any of the 32-bit wired and wireless ARM-based MCU devices, making their products easily adapted to changing design or application requirements.

Features of SimpleLink SDK:

  • 100 percent code compatibility across SimpleLink MCU portfolio
  • TI Drivers offers standardized set of functional APIs for integrated peripherals
  • Integrated TI-RTOS, a robust, intelligent kernel for complete, out-of-the-box development
  • POSIX-compatible APIs offer flexible OS/kernels support
  • Encryption-enabled security features
  • IoT stacks and plugins to add functionality to your design

At the same time, TI also announced a new generation of Wi-Fi chips and modules, the SimpleLink Wi-Fi CC3220 wireless MCU and CC3120 wireless network processor.

The CC3220 features a 80MHz Cortex-M4 application processor, with 256k of RAM and 1Mbyte of flash, and a network processor with a hardware crypto engine. While the CC3220 supports Wi-Fi, the range will be extended in the coming months with devices supporting Bluetooth Low Energy and sub GHz communications, as well as a Bluetooth LE/sub GHz dual band part.

“Developers need to ask what needs to be protected, what they are protecting against and what are the exposure points. The CC3220 provides more than 25 security enablers to handle such aspects as key management and code protection.” Mattias Lange, general manager of embedded connectivity solutions, noted.

The SimpleLink platform delivers the most security features, along with the broadest connectivity protocol support and advanced analog integration, combined with the industry’s lowest power wireless MCUs. Bringing together all of TI’s low-power, connected ARM MCUs, including MSP432™ devices, the platform offers:

  • Bluetooth® low energy: CC2640R2F and CC2640R2F-Q1 wireless MCUs
  • Dual-band (Sub-1 GHz and Bluetooth low energy): CC1350 wireless MCU
  • Host MCU: MSP432 MCU
  • Sub-1 GHz: CC1310 wireless MCU
  • Wi-Fi: CC3220 wireless MCU, CC3120 wireless network processor

The CC3220 wireless MCU LaunchPad development kit [CC3220SF-LAUNCHXL] is available for $49.99 and the CC3120 wireless network processor BoosterPack plug-in module [CC3120BOOST] is available for $29.99. The CC3220 will be priced at $4.99 in 1,000-unit quantities.

SimpleLink Microcontrollers and Network Processors

You can learn more details and discover all SimpleLink processors, development kits and tools at the official website.

Meet BeagleBone Blue by Beagleboard

A new development board by BeagleBoard has been just unveiled: BeagleBone® Blue! The new board is dedicated for designers, hobbyists and professional featuring a Linux-enabled robotics controller complete with an extensive set of peripherals for building mobile robots quickly and affordably.

It is easier today to build your robot using BeagleBone Blue since it has onboard 2 cell (2S) LiPo battery management with charger and battery level LEDs, 8 real-time software controlled PWM/PPM outputs for 6V servo motors or electronic-speed-controllers (ESCs), 4 PWM-enabled DC motor drivers, 4 quadrature encoder inputs, on-board sensors including a 9-axis IMU and barometer, a wide array of GPIO and serial protocol connectors including CAN,4 ADC inputs, a PC USB interface, a USB 2.0 host port, a reset button, a power button, two user configurable buttons and eleven user configurable LED indicators.

BeagleBone Blue also has a pre-configured Wi-Fi access point that enables the process of connecting a battery and coding through a web browser. The board is compatible with Debian, ROS, and ArduPilot software, in addition to Cloud9 IDE on Node.js and other graphical programming options.

Key Features

  • Processor: Octavo Systems OSD3358 1GHz ARM® Cortex-A8
    • 512MB DDR3 RAM
    • 2×32-bit 200-MHz programmable real-time units (PRUs)
    • 4GB 8-bit on-board flash storage programmed with Debian Linux distribution
  • Connectivity and Sensors:
    • Battery: 2-cell LiPo support with balancing, 9-18V charger input
    • Wireless: 802.11bgn, Bluetooth 4.1 and BLE
    • Motor control: 8 6V servo out, 4 DC motor out, 4 quadrature encoder in
    • Sensors: 9 axis IMU, barometer
    • Connectivity: HighSpeed USB 2.0 client and host
    • Other easy connect interfaces: GPS, DSM2 radio, UARTs, SPI, I2C, analog, buttons, LEDs
  • Software Compatibility
    • Debian, ROS, Ardupilot, …
    • Graphical programming, Cloud9 IDE on Node.js
    • plus much more

Designed and developed in coordination with the UCSD Coordinated Robotics Lab, BeagleBone Blue will the best board to use  for your next robot!

BeagleBone Blue is available today from Arrow, Element14 and Mouser for around $80. For more details, visit https://beagleboard.org/blue.

Embedded IoT gateway, in a 17 x 25 mm footprint

Lantronix, Inc. has added the xPico 200 family of embedded IoT gateways that measure 17 by 25 mm, to rpvide secure Ethernet, Wi-Fi and/or Bluetooth connectivity for smart IoT solutions. by Graham Prophet @ edn-europe.com:

The xPico 200 series will feature enterprise security, networking intelligence, and pre-integration with Lantronix’s MACH10 management software platform in a compact footprint that enables the functionality of a powerful IoT device gateway to be integrated into machines not previously practical.

Embedded IoT gateway, in a 17 x 25 mm footprint – [Link]

Premier Farnell partners with Intel on IoT

Farnell element14’s tinyTILE is an Intel Curie module based board created by the distributor in partnership with Intel. by Julien Happich @ edn-europe.com:

Measuring only 35x26mm, the tinyTILE has been specifically designed for use in wearable and IoT designs for consumer and industrial edge products. It runs a software platform created specifically for the Intel Curie module and as such, can be programmed using either the Arduino IDE, Intel’s own software, Intel Curie Open Developer Kit (ODK), or Anaren Atmosphere, a cloud-based ecosystem that offers a complete end-to-end IoT solution.

Premier Farnell partners with Intel on IoT – [Link]

PingPong IoT Development Board – Connecting Hardware to the Cloud

Germany-based Round Solutions developed the PingPong, a powerful and flexible hardware platform for IoT and machine-to-machine (M2M) applications. The PingPong can be used for both wired and wireless connections. The modular hardware design can integrate custom-specific applications and communication standards into a single solution platform that has a very small form factor.

The basic hardware platform of PingPong has a 32-bit 200MHz Microchip PIC32MZ microcontroller unit (MCU) running C/C++ code. It supports RTOS or Real Time Operating System which is available as Open Source Software so that developers can adapt their applications individually and bring them to market more swiftly. The base board of PingPong has following features:

  •  A high-speed cellular module
  • A component for high-precision Global Navigation Satellite System (GNSS)
  • An Internet connectivity module
  • USB
  • CAN-Bus and many other components

    PingPong - The IoT Development Board RTOS 3G Version
    PingPong – The IoT Development Board RTOS 3G Version

One amazing feature is, the high-speed cellular module and the numerous interfaces can be controlled over the cloud. So, you don’t have to keep it wired all the time in order to control all those modules.

Technical Information:

Having an area of 85×52 mm², the PingPong is really tiny in size compared to its features. It has a booming 4 MB flash memory which is perfect for IoT purpose. PingPong beats other IoT modules with the wireless technologies it possesses – 2G, 3G, Galileo E1, GLONASS, and GPS. Supported bands(MHz) for cellular communication are 1800, 1900, 2100, 850, and 900. It communicates with other MCUs over I²C protocol which is widely used by almost all types of MCUs.

The greatest strength of PingPong is its expandability. The developer can overcome all the limitations of PingPong by adding a variety of expansion cards to the PingPong platform. Some examples of expansion cards are, wireless local area network (WLAN), Bluetooth, input/output (I/0), Iridium satellite communications, ISM/RF, SigFox, near-field communication (NFC), radio-frequency identification (RFID), and camera connectivity.

Applications:

  • Send and receive data: Pingpong offers different possibilities for sending and receiving data. Whether it’s wired over Ethernet or on the go with built-in GSM/GPRS module, PingPong does its job of exchanging data continuously.
  • Remote control: The PingPong can be used to control processes remotely via its outputs. Using the digital output with a relay can either enable or disable the power supply of an application.
  • Positioning: With its built-in GNSS and GPS module, the PingPong can also be used to determine position, motion, speed and acceleration.
  • Telemetry: The PingPong can be connected to a wide variety of sensors to process digital and analog measurements. Thus, for example, temperature values collected from a temperature sensor can be transferred via analog input to the PingPong.

And there are much more applications. From hobby projects to industrial development, sensor data collection to the smart home project – anywhere you can use this versatile board.

PingPong supports numerous expansion cards
PingPong supports numerous expansion cards

Important Links:

To learn more on this amazing IoT board, watch these three videos:


Conclusion:

The PingPong is a surprisingly powerful IoT module. It’s a developer’s dream. Having all these features in one package is truly outstanding. The feature of adding expansion cards makes it even stronger.

You can purchase your own PingPong from roundsolutions.com at €199.00. It may seem to be a bit overpriced, but it’s really not. Just consider the features you are getting in a single package and you’ll realize it.

Build Your Next IoT Device With GOBLIN 2

Designed for industry, makers, and visionary students, Verse Technology presents GOBLIN 2, its new card with the best of Arduino technology.

GOBLIN 2 is an IoT development board that unlocks the potential of the Internet of Things. It has been built based on the high-performance 16MHz ATmega328P microcontroller with a built-in SIM5320A connectivity module, and high accuracy 16-channel GPS.

The board contains 10 digital I/O ports half of them work as PWM, and 6 analog pins. It also integrates connectivity for each RS-485 protocol and voltage outputs of 24V, 5V and 3.3V that are ideal for industrial sensors or sensors with analog/digital signal.

The SIM5320A incorporates a dual-band HSDPA/WCDMA and Quad-Band GSM/GPRS/EDGE which gives GOBLIN 2 the connectivity with web servers through any cellular web. It also includes inlets/outlets to connect peripherals like keyboards, microphones, speakers, and thus exploit better the cellular network.

GOBLIN 2 Introduction video:

Technical specifications of GOBLIN 2:

  • Dimensions: 65.5mm x 82.2mm
  • Microcontroller: ATmega328P
  • CPU Speed: 16 MHz
  • Memory: 1KB EEPROM, 32KB Flash, 2KB SRAM
  • External Power Input: Micro USB 2.0 5V, Solar Panel 5V up to 200mA, 3.7V battery charger.
  • Power Output: 3.3V 300mA, 5V 3A, 24V 500mA.
  • Ports:
    • 6 ADC input – 10 bits resolution
    • 10 digital in/out – 5 PWM
    • 1 Micro USB Up to 115.2k baud
  • Connectivity:
    • SIM5320A with Header USB 2.0 interface
    • Header to Keypad, microphone and speaker for SIM I/O
    • High accuracy 16 channel GPS
    • RS-485 protocol 10Mbps Up to 256 nodes on the bus

GOBLIN 2 is powered by Li-Po battery of 3.7V to 4.2V, which can be charged through a solar cell or a Micro-USB thanks to its built-in battery management module. With an integrated voltage converter, GOBLIN can offer three output voltages; 24V to industrial sensors, 5v to charges like servomotors or related sensors with that kind of supply voltage and 3.3v for communication devices such a RF, Wi-Fi, sensors and others.

The board’s microcontroller can be programmed with Arduino IDE or Atmel Studio via micro USB, which also can be used for direct communication with the SIM5320A from the PC for a SIMCOM “AT+” command interchange.

Some of GOBLIN 2 applications:
  • Monitoring of industrial sensors with an RS-485 protocol.
  • Telemetry.
  • Vehicle monitoring.
  • GPS systems.
  • Weather monitoring.
  • Alarm system.
  • Automation applications.
  • SMS Applications, calls.
  • Monitoring of medic variables.
  • Remotes controls.

GOBLIN 2 is now available for $134 on Verse Technology store. Their github repository and documentation page contains some example codes and projects. This video shows the GOBLIN 2 in action:

Virtualette V1, A Tiny Powerful Microcomputer

Designed by SRKH Designs, Virtualette V1 is a small dual stack microcomputer that can run Android and Linux operating systems, for network-wide IoT and mobile edge computing solutions and electronics DIY projects.

Virtualette V1 is designed based on the dual-core Cortex-A7 Allwinner A20 SoC, with 1GB DDR3L base memory, 8GB onboard NAND flash, and a 32GB microSD card. It also includes a real time clock, onboard battery and wakeup function, and 80 IO pins.

The microcomputer is consist of dual connected PCBs with 7.6cm x 3.7cm x 1.8cm size including mounting feet. It has an Ethernet jack, a USB port to connect mouse or keyboard, microSD card slot, SATA port, and mini USB ports.

Virtualette V1 is a low energy device with a typical 2.4W of energy draw with three power options; 9-48V PoE (Powered over Ethernet), 5V USB OTG, and a lithium battery.

You can run any of linux-based operating system on the V1, in addition to the optimized linux distribution that will be shipped with it. Users can change the OS by swapping over the micro SD card and they have the option of booting from an external microSD card or from the onboard NAND 8GB flash.

Additional storage can be added by inserting a USB2 drive or external hard drive (SATA compatible). V1 can be optionally booted by USB or a dedicated SPI ROM port.

Virtualette V1 Playing DVD via SATA

Examples of V1’s potential capabilities are:

  • As an individual desktop device or controller for a drone or robot.
  • As a liquid-cooled computer inside a 40mm PVC pipe.
  • As M2M nodes in a distributed intelligent security system.
  • Deployed as a peer-to-peer, machine-to-machine network in applications such as display information systems in airports or train stations.

With the launch of their Kickstarter campaign, SRKH Designs aims to raise funding of US$22.5k, offering backers Virtualette V1 devices from the first production run as their reward.

Post campaign, a roadmap of hardware products for the Virtualette range is planned. This includes future quad-core and octa-core versions, an add-on FPGA-based development board, a desktop platform, popular video adaptor interfaces and an ‘All in One’ peripheral board designed to embed V1 inside a slimline display case.

Radino WiFi: Arduino With ESP8266EX

The Internet of Things or IoT technology is booming nowadays. Almost all makers are getting interested towards this field of endless possibilities. The Arduino and the ESP8266 are strong bases of this awesome technology. But, what will happen if we merge an Arduino with an ESP8266EX under the same package? Well, the answer is “Radino WiFi”.

Radino WiFi : The Arduino compatible WiFi Module
Radino WiFi: The Arduino compatible WiFi Module

The In-Circuit Radino WiFi combines an ATmega32U4 with the popular ESP8266EX WiFi SoC to the small
Radino package. The ATmega32U4  MCU is also used in Arduino Micro. In Radino, the MCU is preprogrammed with Arduino bootloader. Hence, you can use Arduino IDE for uploading codes to this Arduino-compatible device. In-Circuit stated on their website:

It′s part of the radino-series, which provides full Arduino-compatible wireless communication devices in a small form factor, all pins are compatible with each other.

Features:

  • Arduino-compatible
  • Fully integrated WiFi Chip ESP8266EX by Espressif
  • 802.11 b/g/n protocol
  • Wi-Fi Direct (P2P), soft-AP
  • Integrated TCP/IP protocol stack
  • Integrated TR switch, balun, LNA, power amplifier and matching network
  • +19.5dBm output power in 802.11b mode
  • ESP8266 Power down leakage current is < 10uA
  • Wakes up and transmits packets in < 2ms
  • ESP8266 Standby power consumption is < 1.0mW
  • 15 GPIOS (7 PWM, 5 Analog IN)
  • I²C, SPI, UART
  • USB (HID Keyboard & Mouse, virtual UART)
  • High-Performance, Low-Power Microcontroller ATmega32U4

Technical Details:

Radino WiFi consists of two chips. An ATMega32U4 and an ESP8266EX. The ATmega32U4 is used as I/O machine for the ESP8266EX. It performs all the required tasks to control I/Os. In the other hand, ESP8266EX is the main WiFi chip and all WiFi services run only on the ESP.

The Radino comes preprogrammed with an ESP based web server. The default settings are given below:

  • Access point: RADINO-WIFI
  • Password: 12345678
  • TCP/UDP service for UART-Bridge/WiFi
  • Default IP: 192.168.2.1

The user can change these default settings anytime.

Download the Radino library for Arduino IDE 1.6 from here. Add this library to Arduino IDE and select Radino board from board manager.

This video explains how to use this amazing module.

Radino Pinout:

Radino WiFi Module Pinout Diagram
Radino WiFi Module Pinout Diagram

Radino has 15 GPIO pins. Among them, 5 pins can handle PWM signal and 5 pins can take analog signal as input. Radino is powered by a 3.6V power source. Exceeding that value will damage the device.

Important Links:

Another video on this topic:

You can purchase Radino WiFi from shop.in-circuit.de. It costs only 19.90€.

Expand Your ESP8266 Analog Inputs With $10

ESP8266 is a very powerful module for building an IoT or WiFi-based project. But since it has only one analog input, you may need to use another microcontroller or circuit to connect multiple sensors and data sources with your ESP8266.

Allaboutee created the second version of their analog expander board. Simply it is a board that lets you add eight analog inputs to your ESP8266 via I2C, the first version had only four inputs.

The expander is a 19x14mm board that is powered by a range of 2.7V to 3.6V, features 8 10-bit resolution analog inputs for sensors with an output voltage lower than 3.3V. Allaboutee developed some open source, easy to use libraries and examples:

Expander pinout:

  • VDD – 2.7V to 3.6V (If using with ESP8266 you’ll have to use 3.3V for this pin).
  • GND – Ground
  • SCL – I2C clock (connect this to GPIO0 of the ESP8266)
  • SDA – I2C data (connect this to GPIO2 of the ESP8266)
  • A0 -> A7 – Analog inputs (0v to 3.3V)

You can not use two or more boards to have more than 8 analog inputs because the chip’s I2C is factory fixed. If you do not connect a pin to anything, it will be “floating”, that means it’s value is not defined so it can be anything.

This video shows the expander board in action:

ESP8266 expander is available for $10 at tindie, it may be a bit expensive but with the cost of ESP8266, it is a very cheap alternative of the $100 Arduino Wifi shield.

“If you were to desire an Arduino based and thus easy to program, WiFi enabled microcontroller, then you could purchase an Arduino WiFi shield for $100+, OR you could instead get an esp8266 w/ breakout board for $6, A 3.3v voltage regulator for $1, the analog input expander $10 and an FTDI to USB 3.3v programmer $3.” – A review by Erol

ESP32 Review: Using the ESP32 with the Arduino IDE

In this video educ8s.tv reviews the ESP32, the successor of the popular ESP8266!

Hello guys, I am Nick and welcome to educ8s.tv a channel that is all about DIY electronics projects with Arduino, Raspberry Pi, ESP8266 and other popular boards. You can subscribe to our channel by clicking on this button. Today I am very excited because we are going to see this new board which uses the new ESP32 chip and we are going to learn how to program it using the Arduino IDE. The ESP32 chip will be the heart of most of the projects we are going to build in the near future, because it offers everything we need in one low cost solution!

ESP32 Review: Using the ESP32 with the Arduino IDE [Link]