Tag Archives: IoT

Arduino Communication with an Android App via Bluetooth

With the arrival of the IoT and the need for control, devices now need to do more than perform the basic functions for which they are built, they need to be capable of communicating with other devices like a mobile phone among others. There are different communication systems which can be adapted for communication between devices, they include systems like WiFi, RF, Bluetooth among several others. Our focus will be on communication over Bluetooth.

Today we will be building an Arduino based project which communicates with an app running on a smartphone (Android) via Bluetooth.

Arduino Communication with an Android App via Bluetooth – [Link]

Particle Mesh – A Mesh-Enabled IoT Development Kits.

Particle, which has been known for its collection of  IoT focused development boards, and its Internet of Things (IoT) platform (Particle Cloud) has launched a new set of mesh network-enabled IoT development kits called Particle Mesh. Particle Mesh is expected to provide developers more insight into implementing mesh networking technology. They help to collect sensor data, exchange local messages, and share their connection to the cloud.

Particle Mesh Hardware
Particle Mesh Hardware

Particle Mesh features a new family of mesh-ready devices with Wi-Fi, BLE and LTE connectivity and also integrated with the Particle device cloud. Particle mesh consists of three main boards: The Argon, The Boron, and the Xenon. Each of these Particle Mesh boards has at least one form of outside connectivity option (LTE/3G/2G, Wi-Fi or Bluetooth) and an onboard mesh network hardware to facilitate setting up a mesh network for local communications between sensors and other particle mesh boards. All three devices are built around the Nordic nRF52840 MCU + BLE + mesh radio and follow the Adafruit Feather specification making it compatible with most Adafruit FeatherWing hardware accessories. (more…)

Raspberry Pi Plus Cloudio – A Personal IoT Computer with Drag and Drop Programming

Everybody loves the Raspberry (at least the makers does) and has seen several applications from being blasted to space or powering a self-driving car. Raspberry Pi in its natural state is an ideal platform for IoT development mostly due to its connectivity interfaces like the Bluetooth, WiFi, and Ethernet but no significant development has been done in this space apart from some pretty hacks in the last years. GraspIO in partnership with Farnell Element14 distributor has released the GraspIO Cloudio, a Raspberry Pi add-on board with Drag and Drop programming interface for full suite IoT applications development.
GraspIO Cloudio
Cloudio offers the ability to do drag and drop programming instead of the conventional text-based python programming and is supported on iOS and Android devices. So with just an Android phone, iPhone or iPad, you can start programming and controlling your raspberry pi cloudio based applications. Cloudio incorporates Voice Assistant Capabilities, Internet of Things cloud service, sensor monitoring and dashboard, custom notifications, and even provides off the shelf support with the beautiful IFTTT (“If This Then That”) platform. With the integration of IFTTT, you can easily automate some actions like for examples – if an email is received then send sensor reading or feed the fish for a while, another interesting case is – if a weather forecast states there is a likelihood of rain then closes the cage. Cloudio also provides support for upload program to multi-board at once, a perfect option if you will be managing a large number of boards.
Cloudio and Raspberry Pi
At the heart of the Cloudio board is the Atmel 8-bit AVR Atmega32U4 controller and comes in a portable size that makes it compatible with Raspberry Pi 1/2/3/Zero and ZeroW. It comes with a 0.96″ OLED Screen, a display that can be used for displaying real-time sensor values, custom messages and even supports emojis. The board includes proximity, light and temperature sensors and an extra 3 ADX ports for interfacing with external sensors. The board consists of a proximity, light, and temperature sensors plus 3x ADC interfaces for connecting other sensors such as humidity and motion. With the Cloudio, you will never run out of 5V ports as it comes with three digital 5V output ports. Cloudio does not require any external power supply unit and gets its power from the underlying Raspberry Pi. Other features of the board are a mini 5V servo motor port, a buzzer, RGB LED and tactile switch.
According to Steve Carr, the Global Head of Marketing at Premier Farnell and Farnell element14, he says –
“The versatility of GraspIO Cloudio along with its ease of use will make it popular with makers and innovators in a wide range of application environments. Cloudio, when combined with a Raspberry Pi, is a Full Stack IoT platform meaning that you can programme IoT devices simply and quickly with drag and drop programming on a mobile app. The combination of built-in hardware facilities and access to innovative application software will make Cloudio a valuable addition to the range of tools available to developers of projects involving voice, motion, imaging and cloud interaction.”
Cloudio lets you build and create your own voice assistants using the inbuilt speech recognition feature to control it from your smartphone. It comes with an unlimited cloud service from GraspIO to connect, program, monitor, and manage Cloudio from your mobile device. It is preloaded with 50,000 free Cloud Calls and which a daily 100 non-cumulative calls will be credited to the user’s account for life. Cloudio drag and drop based approach to IoT development is undoubtedly going to help limit the barriers in commencing IoT development.

The GraspIO Cloudio Raspberry Pi add-on board is now available to purchase, priced at $40 and is exclusively manufactured and distributed by Premier Farnell UK Limited and other companies that are members of Premier Farnell Group. You can buy the Cloudio Raspberry Pi add-on board here.

SocioNext MN87900 is a Single-Chip 24 GHz Radio Wave Sensor for the Internet of Things

The Socionext MN87900 from Socionext is a powerful and low-power single-chip microwave sensor at 24GHz with sophisticated sensing capabilities like motion detection, speed and direction detection and so many, that can quickly find applications in the Internet of Things sensing applications.

Socionext MN87900

Unlike PIR sensors like the popular HR-SR501 that can detect motion to about 3 meters at about 120 angles and based on the concept of detecting infrared energy emitted by an object while attempting to determine if it’s a motion or not, the Socionext MN87900 is a microwave sensor that sends out microwave signals and detects the bounce back signals to decide if it’s a motion or not. Microwave sensor uses what we call the Doppler’s Effect concept.

SocioNext MN87900 is a 24 GHz and very tiny, measures about 12mm x 7mm x 1mm making it ideal for the small size requirement in the most Internet of Things application and other applications in the areas of smart-home, automotive or driver assistance systems, medical applications, and many more. Based on a single-chip radio frequency IC (RFIC) that offers a multi-mode sensing capability for detecting stationary or moving objects and measuring the distance and direction of movement, including whether an object is approaching or leaving. This multi-mode sensor capability gives the device ability to re-adapt its functionality to different case scenario without making any single hardware changes.

The RFIC can be used to sense very slow movements (like breathing and heartbeats), and even detect the movement of multiple objects within a 160-degree radius to a distance of about 8 meters away. With slight modification, the RFIC can reach a range of up to 30 meters.

Apart from having powerful sensing capabilities, it is also power friendly. During continuous operation, the sensor can take up to 500mW, but this can be reduced to an intermittent operation where for example, during a one-sixth burst, the sensor can take about 80mW, a very drastic reduction in power. The MN87900 can pass through fabric or resin like materials, and unlike camera-based people detecting applications, the MN87900 doesn’t need to capture or display images to identify people or objects which is handy for privacy-concerned applications.

The MN87900 supports SPI as a form of interface to microcontroller system. Along with the hardware, a simple API system was developed to support the designs of CW, FSKCW, and FMCW mode capabilities to provide distance, direction, and relative velocity.

The following are the SocioNext MN87900 key specifications:

  • Sensing Modes – CW, FSKCW, FMCW (moving or stationary)
  • Detection
    • Motion direction – approaching or leaving
    • Motion speed – up to 200 km/h
    • Range – 0.15 to 8 meters 80°@-3dB, expandable to 30 meters
  • Variable frequency width –  24.15±0.1 GHz
  • Host Interface – SPI
  • High sensitivity – -110dBm
  • Transmission Power: 0.8mW
  • Fast frequency pull-in: 100 µs
  • Automatic adjustment: Built-in initial adjustment function (e.g. adjustment of RC filtering)
  • Power supply voltage: 2.5V
  • Current consumption: 200mA
  • Module size: 12mm x 7mm x 1mm
  • Weight – 145 mg
  • Temperature Range – -40°C to 85°C

The module pricing is currently not available, and more information about the product can be found here.

SensiBLEduino – A full fledge ‘hardware-ready’ development kit for IoT and supports Arduino

IoT which translates to the Internet of Things has been a significant buzz for the last five years while disrupting major Industries (from Agriculture, Energy, Healthy, Sports and several others).

SensiBLEduino
SensiBLEduino Development Kit

IoT adoption has seen rapid development in the makers’ world, with different makers and manufacturers producing various forms of boards, chips, software to facilitate quick IoT development. Boards like ESP8266 from Espressif System is used for rapid prototyping and a low-cost choice for Wi-Fi-based IoT applications. Israeli based IoT firm SensiEdge has launched the SensiBLEDuino, an off-the-shelf, hardware-ready development kit based on the open-source Arduino for rapid prototyping of IoT applications.

SensiBLE is a full fledge customizable solution for those wanting to design IoT products. It helps to fasten development with a variety of sensors onboard, along with Bluetooth LE 4.1 capabilities and a low-power ARM® 32-bit Cortex®-M4 CPU with FPU. Some of the main challenges when embarking on IoT product development are; what platform will I use? What sensors are available to achieve my goal(s)? How do I handle connectivity? What about the Cloud Platform to use, and so on. Developers or product designer always result in the use of several boards or modules to achieve this while also increasing the time to bring the product to life. The SensiBLE kit removes most of these fears; it combines hardware and software in tiny form factor to allow developers get their product to market quickly at lower development costs. (more…)

Bosch BMA400 – Did you thought accelerometers couldn’t get any better?

Accelerometers are used in almost all fields, and they have been growing in popularity in IoT and wearables. Nowadays, those devices require a of energy, and because of this, they need to be constantly charged or batteries need to be constantly changed which causes users to lose interest, or to be limited by this problem. Size might be a problem too because some MEMs (micromechanical systems) acceleration sensors are too big to be implemented in everyday portable objects. In June 2018, Bosch will unveil their BMA400, a sensor that extends battery life and has a huge range of capabilities in a small size.

BMA400 is capable of measuring tilt, orientation, tap/double tap, and step counting (with activity recognition) using a low- noise measurement of accelerations in three perpendicular axes. Additionally, the device only uses 10% of the energy current comparable devices use which makes it useful for applications where charging is impossible. For example, this device could be used for package tracking over long distances, saving power by putting itself on sleep mode until something happens (the package is mishandled) which could compromise the quality of the product inside the package.

Other applications include home automation (automatic air conditioning that considers status (open or closed) of windows and doors), security (burglar detection), and sports. The BMA400 includes an activity detection function that can differentiate between walking, running, and standing. All this could be applied into wearables, and because of its size it could be a game changer in hybrid smartwatches (traditional watch with added smarts in a discrete way).

BMA400 measure only 2 mm x 2 mm x 0.95 mm, and device data can be retrieved over longer intervals (FIFO buffer of 1kB). Other specifications include:

  • 12-bit digital resolution
  • Output data rate (ODR) of 12.5 Hz to 800 Hz
  • Supply voltage of 1.71 V up to 3.6 V

Complete list of specifications can be found in the official website.

This improvements in an already widely used technology could result in advances in thousands of different devices, and in the implementation of this sensor in devices where it couldn’t be fitted before. Improving battery means improving product usability which results in happy users who can now use their device for longer periods of time. Also, makers and hobbyists could now apply this technology to new devices using the increased battery life as an advantage.

 

[Source]

HoneyWell´s Small, High Performance Pressure Sensor

Honeywell is a technology company working towards connecting the world. They are currently working on connected homes, buildings, plants (such as refineries), warehouse, workers, aircrafts, vehicles, and healthcare while addressing challenges such as energy, safety, security, productivity, and global urbanization. To enhance product performance, Honeywell has designed a MicroPreassure board mount pressure sensor measuring only 5 mm x 5 mm.

Nowadays, the market is filled with low performance cheap sensors or high performance expensive sensors which do not meet the need for fully functional cheap sensors for industrial and medical applications. Honeywell’s MPR is a small piezo resistive silicon pressure sensor with digital output, and it is the smallest ported pressure sensor in the market. This device was designed to be easily installed and to work without the need for external amplification. MPR MicroPreassure sensor has amplification, compensation, and low power consumption. Additionally, the device has high accuracy, it is liquid tolerant, meets moisture sensitivity level 1 requirements, and it is durable (it has strong metal ports).

This device could not only help improve already existing technologies, but also it would allow for this type of sensors to be introduced in new objects such as wearables, or common objects for IoT applications. In medical industry the sensor can help reduce the size of bulky devices and may even allow the patients to own their own monitoring device at home. MicroPreassure was specifically developed for high volume applications such as appliances, non-invasive blood pressure machines etc. For circuit designers and engineers, this sensor gives the opportunity to reduce the size in all the devices by using less space in boards and PCBs.

It was designed to meet high volume requirements (250,000 units/year), so with a low production cost and a really good performance, designers can now include these sensors to reduce their device price and to give them optimal performance. The user will have access to 1.5% accuracy and 13 bits of effective resolution which makes the processes more efficient. As a result, depending on the design, the device may be less prone to errors, require less power, or make less noise.

[source]

Visible Things Industrial IoT Starter Kit

Simplify and secure your IoT solution with Avnet Silica’s complete evaluation and reference platform, Visible Things. It connects smart devices right to the cloud and enterprise software, and supports an ever increasing range of sensor, connectivity, gateway and security technologies. Together with Avnet Silica’s cloud, analytics, mobile and enterprise integration services, it’s a complete solution from edge to enterprise – so relax.

Avnet Silica’s Visible Things Industrial Starter Kit provides a turnkey solution based on the Renesas Synergy™ Platform, that allows you to start designing at the API level and is equipped to handle an outstanding range of connectivity tasks.

Visible Things – Key Features

  • Sensor to server security layer on top of network security
  • Quick evaluation of end application
  • Highest degree of flexibility
  • Reduces development time significantly – time saving
  • Optimised power consumption
  • Cloud ready

Renesas Synergy™ Platform – Key Elements

  • Qualified commercial-grade software with a common API
  • Scalable and compatible ARM Cortex-M based microcontrollers
  • Intuitive professional development tools and kits
  • Time-saving end-to-end solutions
  • Click-through licensing plus a collection of specialized add-on software

[Read more] – [View Datasheet]

R-78S switching regulator boosts a AA battery to 3.3V

Recom’s first evaluation board allows engineers to effortlessly test the functionality of the R-78S switching regulator, which boosts a AA battery or external supply voltage to 3.3V for low power IoT applications. By Julien Happich @ eenewseurope.com:

The R-78S Evaluation Board demonstrates the performance of the R-78S which boosts single-cell AA battery voltage of 1.5V up to a stable 3.3V. This guarantees much higher energy capacities and reduces maintenance costs compared to button or coin cell batteries. This will effectively extend the operation lifetime of an application since the boost converter continues to operate at input voltages as low as 0.65V.

R-78S switching regulator boosts a AA battery to 3.3V – [Link]

BigClown: The IoT Kit for Makers

BigClown is a Modular IoT kit that is live on indiegogo.com. It’s wireless, open-source, running from batteries for years and with technical support.

Meet BigClown – the best IoT kit in the galaxy. BigClown will help you to build your own electronics. The kit modular, wireless, open-source, running on batteries for years and with support. Start creating your smart gadgets. It is as simple as building a castle from LEGO® bricks or an IKEA® cabinet. Support our risk-free project – delivery guaranteed! Hardware design, supply chain, and manufacturing are all set.

The project is 49% funded and has 30 days to go.