Tag Archives: LCD

How to Set Up and Program an LCD Display on an Arduino

circuitbasics.com has a tutorial on how to setup an LCD with Arduino.

In this tutorial, I’ll explain how to set up an LCD display on an Arduino, and show you all the functions available to program it (with examples). The display I’m using here is a 16×2 LCD display that I bought for under $10 on Amazon. LCDs are really useful in projects that output data, and they can make your project a lot more interesting and interactive.

How to Set Up and Program an LCD Display on an Arduino – [Link]

How to Setup an LCD Touchscreen on the Raspberry Pi

circuitbasics.com has a tutorial on how to setup a LCD screen for Raspberry Pi.

In this tutorial, I’ll walk you through the process of installing an LCD touchscreen on the Raspberry Pi, step by step. Many LCD touchscreens for the Raspberry Pi include an image file that you can write to your SD card and get up and running pretty quickly.

How to Setup an LCD Touchscreen on the Raspberry Pi – [Link]

Arduino Tutorial: Menu on a Nokia 5110 LCD Display Tutorial

In this easy Arduino Tutorial educ8s.tv is going to show us how to create a Menu on a Nokia 5110 LCD display.

This is the project we are going to build. In the display a simple menu appears, and with the help of three buttons I can navigate up, or down and select a menu item. Let’s select the first option. As you can see a new a UI screen is displayed and by pressing the up and down buttons we can change the contrast of the display. If we press the middle button again, we go back to the main UI screen. If we now select the second menu item and press the middle button we can turn the backlight of the display on or off. Lastly if we navigate to the last menu item we can reset the settings for the display to the default values. Of course this is just a demonstration project, you can modify it to build your own more complex menus if you wish. Let’s now see how to build this project.

Arduino Tutorial: Menu on a Nokia 5110 LCD Display Tutorial [Link]

DIY Breathalyzer Using Arduino UNO

Today I am going to discuss how to make a very simple DIY Breathalyzer using Arduino UNO and few external components. Ana Carolina designed this project as an instructable in instructables.com. This is a low-cost project and a useful one too. If you have no idea about what breathalyzer is, let me explain briefly: A breathalyzer is a device for estimating blood alcohol content (BAC) from a breath sample. Check the link given for more information.

Arduino Based Breathalyzer
Arduino Based Breathalyzer

Requirements:

  • Arduino Uno
  • MQ-3 Alcohol Sensor
  • 128×64 LCD (Liquid Crystal Display)
  • 7 × 330 Ohm Resistor
  • 7 × LEDs (1 Red, 2 Yellow, 3 Green and one other color)
  • Jumpers Wires
  • Breadboard
  • Soldering Iron (optional)
  • Solder Wire (optional)

Details:

This project is very simple. Here we are using an array of six LEDs and a 128×64 LCD to display the alcohol level. The presence of alcohol is sensed by an MQ-3 alcohol sensor and then analyzed by an Arduino board. We are using Arduino UNO in this project, but any model can do the job.

Three Green LEDs represent that alcohol level is OK and within the safe limit. Two Yellow LEDs are used to describe that safe limit is going to be reached, and you know it well why the Red LED is there. In fact, those LEDs are used just to give you a quick idea. If you want to know the exact value, the display is there for you.

You can tweak the program and re-calibrate the breathalyzer. But you must remember that breathalyzer doesn’t precisely measure your blood alcohol content, rather it estimates a value from the amount of alcohol in your breath.

Circuit:

Breathalyzer Circuit On Breadboard
Breathalyzer Circuit On Breadboard

You can make the circuit also on PCB or Veroboard. But for the prototyping purpose, the breadboard is the best choice. You can see how straight forward the connections are.

The Code:

Some part of the original code was in Portuguese. So I have translated it into English. Also, the original code shared by the author in instrucatbles.com is a buggy one. So, I recommend you to use my bug-free code instead of the original one.

Please note that you have to download and add the u8glib library in Arduino IDE beforehand. It is very important. You can either download the u8glib v1.14 library for Arduino directly or go to the site and choose what to download.

Follow the given steps to add a .zip library in your sketch: Open IDE and click on Sketch  Include Library  Add .zip Library. Now select the downloaded .zip library file. You needn’t unzip it.

When everything is done, verify and upload the code to Arduino.

Test It:

I must not recommend you to drink alcohol just for testing the breathalyzer. Rather get a towel and spray alcohol on it. Now hold the towel in front of the sensor. Move it back and forth to observe the change in reading. It may take a while for the breathalyzer to stabilize.

Consider watching the video for a better understanding:

RELATED POSTS

How to Set Up and Program an LCD Display on an Arduino

circuitbasics.com writes:

In this tutorial, I’ll explain how to set up an LCD display on an Arduino, and show you all the functions available to program it (with examples). The display I’m using here is a 16×2 LCD display that I bought for under $10 on Amazon. LCDs are really useful in projects that output data, and they can make your project a lot more interesting and interactive.

How to Set Up and Program an LCD Display on an Arduino – [Link]

1K LCD Tinyfont

A tiny pixel font rendered to an LCD display, in under 1K program space. by Zach:

For the Hackaday 1k challenge, I’m attempting to pack a small pixel-based font and rendering to LCD in under 1K.

The project has already been developed in C, but the file size was much larger. This is rewrite in assembly.

Developed on an Atmega328p using a display from a Nokia 5110 on a Sparkfun dev board.

1K LCD Tinyfont – [Link]

Raspberry Pi LCD Touchscreen Calibration

Circuit Basics @ youtube writes:

In this video, I go through the process of calibrating an LCD touchscreen on the Raspberry Pi. Calibrating the LCD touchscreen should be done after installing it to make it more responsive and accurate.

Raspberry Pi LCD Touchscreen Calibration [Link]

Temperature alarm for boiling milk

image2

Domen Ipavec shares his temperature alarm for boiling milk. Temperature alarm uses an Atmel attiny841 microcontroller, DS18B20 high temperature waterproof temperature sensor from adafruit, 2×16 HD44780 LCD and a buzzer to do its job.

Anyone who has ever boiled milk on the stove knows, that it has a nasty habit of overflowing. That is why I created the temperature alarm for boiling milk to be used my mother. It continuously measures the temperature of the milk and sounds an alarm when the temperature is over the preset alarm value.

Temperature alarm for boiling milk – [Link]

Dual Screen Netatmo Weather Station

Netatmo Weather Station is a module that measures your indoor comfort by providing vital information such as temperature, humidity, air quality, and CO2, alerting you when you need to air out your home to bring down its pollution levels.

fr8fd78ivcvqdh7-medium

One of the Netatmo limitations is that you need to use a smartphone to view the collected information by the station. To solve this, Barzok had developed an Arduino-based screen to display the weather data remotely, and published a full guide to build it in this instructable.

Barzok’s first attempt was a stand-alone device inside weather station using an Arduino UNO, a real time clock, a temperature and pressure sensor, and a 2.8” screen. It displays the time, pressure history over the past 6 days, and temperature as digits and as a gauge bar.

flxlafbivcvqchz-medium

The next experiment was connecting the Arduino UNO with Netatmo API through an Ethernet shield and displaying the data on the screen. The connection was the difficult part as the Arduino was not powerful enough to establish an HTTPS connection and receive valuable information from Netatmo servers.

The solution uses a PHP client on a web server, which connects with Netatmo servers, and then the Arduino retrieves the data using the standard HTTP.

f4bjzi3ivcvqcwg-medium-1

The final version of the station consists of an Arduino Mega, two 2.8” inches screens, and an ESP8266 Wifi module. There is no limit of the Arduino type and screen size, you can use your model with minor changes of the code. Barzok also made a custom circuit that transforms the 9V input voltage into a 5V to power the Arduino and 3.3V to power the ESP8266.

fdd0p87iva4yibz-medium

The diagram presents the process, the Netatmo module gathers the weather information and uploads them to the Netatmo servers. Then a PHP application runs on remote server and retrieves the information from the Netatmo servers and turns it into simple text data. Finally the Arduino receives the simple texts with the ESP8266 module and displays them on the two screens.

The two screens displays different information, the left one provides the real time data received from the Netatmo sensors about temperature, pressure, humidity, rain and CO2. The other screen shows the time and date, pressure history, and 3 days weather forecast.

f03ni4miva4yiem-medium

fyodjj4iva4yif3-medium

You can find more instructions to build this project with detailed description about the code, schematics, box design at the project page.

Introducing Autodesk Circuits Simulator For Beginner

Circuits.io is an online platform created by Autodesk for hardware hackers. It provides a browser-based application for designing, simulating electronic circuits and creating PCB boards. Autodesk circuits simulator can simulate Arduino-based projects for testing designs and programs before creating them in real life.

tumblr_inline_myzj7r9yiv1qal3cc

The simulator allows you to learn electronics using a virtual Arduino board and breadboard without blowing up capacitors or burning yourself with solder on your work table. It is free to use, but more features are available with premium accounts. To start using circuits.io just go to the website, create an account, and start building your circuit.

This instructable guides you to get familiar using the simulator through three different projects. You will only need a computer with internet access, and you can build these projects in real if you have the components.

In this tutorial you will work with these parts:

  • Arduino Board, the brain of your circuits.
  • Breadboard, the board where you will connect the elements.
  • Breadboard wires.
  • Resistors.
  • LEDs.
  • Potentiometer.
  • LCD.
  • DC motor.

The first project is simple and easy, it is about making a LED turn on and off continuously. The circuit consists of only one resistor and one LED connected with the Arduino, which will turn the LED on and off for a period of time defined in the code.

blink

Another simple project is based on the LCD (Liquid Crystal Display) which receives information from Arduino and displays it. You can program the Arduino to display a message you want, control its location, make it blink, or move the message on the screen. You will also use a resistor and a potentiometer to control the brightness of the backlight.

lcd

In the third project you will control DC motor speed and its spins in Autodesk Circuits. The motor must be fed by an external power source, and the Arduino will control the current flow to the motor through the TIP120 transistor.

motor

The full instructions and guides are available in this instructable. When you finish making these projects you can explore the simulator features and components, and start building your own projects.