Tag Archives: Li-Ion

AmpStrike – Battery Powered Bench Power Supply

ampStrike_schematic

This is a small bench power supply that is powered by two lithium-ion batteries. The project was inspired by Dave Jones from EEVblog but the design is completely mine. The voltage range is 0-20V regulated in 10mV steps and maximum current is 1A with current limit set in 1mA steps.

The power supply runs on a linear voltage regulator built on discrete components. The design of the linear regulator was inspired by the user Amspire from the EEVblog forum. The basic idea is that the Q1 pass transistor and U5A op amp act in a classic voltage regulating loop. U5A gets feedback from the output voltage and acts on Q1 in such a way that the output voltage equals the reference voltage on the inverting input. U5D acts as a comparator and switches the base of Q1 low to set the output voltage to 0V. It acts as a current limiter which is quickly switching on and off the output to maintain the set current limit.

AmpStrike – Battery Powered Bench Power Supply – [Link]

Lithium-Ion Battery Warms Up, Operates In Subzero Temperatures

ACB-1453168996220

Charles Q. Choi @ spectrum.ieee.org discuss about a new type of li-ion battery able to work in low temperatures.

A new “all-climate” lithium-ion battery can rapidly heat itself to overcome freezing temperatures with little sacrifice in energy storage capacity and power, researchers say.

This advance might enable applications for which high-performance batteries are needed in extremely cold temperatures, such as electric cars in cold climates, high-altitude drones, and space exploration. EC Power is now creating all-climate battery cells in pilot-production volumes that can be put directly in vehicles, says study lead author Chao-Yang Wang, a mechanical and electrochemical engineer at Pennsylvania State University.

Lithium-Ion Battery Warms Up, Operates In Subzero Temperatures – [Link]

One step closer to the ‘ultimate battery’

lithium-air-battery-demonstrator

Erica Torres @ edn.com discuss about lithium-air batteries that looks promising for future use.

Although scientists are still working toward replacing lithium-ion (Li-ion) batteries with lithium-air (Li-air), or lithium-oxygen, batteries, researchers at the University of Cambridge have developed a lab-based demonstrator of such a battery. It is safe to say we still have another decade before we can begin to utilize such powerful batteries as scientists work to make sure it is stable enough for widespread use.

One step closer to the ‘ultimate battery’ – [Link]

Power Management Solutions: Battery Chargers

Fig0128

Maurizio @ dev.emcelettronica.com writes:

Out of all portable devices, the most numerous are the mobile phones (Figure 1). Most of them feature Li-ion or Li-polymer accumulators and Freescale has a broad range of charger ICs dedicated to supporting all the phases of a complete recharge cycle. Generally speaking the charging of a mobile phone is performed by taking energy from:

a) from a wall outlet
b) from the USB port of a computer
c) from the 12V output of a vehicle

Power Management Solutions: Battery Chargers – [Link]

IC monitors multicell battery packs

Intersil ISL94203

by Susan Nordyk @ edn.com:

The ISL94203 battery-pack monitor IC from Intersil monitors, protects, and cell-balances three- to eight-cell rechargeable battery packs, supporting Li-ion CoO2, Li-ion Mn2O4, and Li-ion FePO4 chemistries. Its internal state machine has five preprogrammed stages that accurately control each cell of a battery pack to extend operating life.

In addition to functioning as a stand-alone battery-management system for rechargeable Li-ion battery packs, the ISL94203 can be used with an external microcontroller communicating via an I2C interface. The device integrates high-side charge/discharge FET-drive circuitry, which allows the battery pack to be securely ground referenced.

IC monitors multicell battery packs – [Link]

Get a constant +5V output by switching between a +5V input and a single-cell LI+ rechargeable cell

an_maxim_an5818

App note from Maxim Integrated on providing smooth power from two sources. Link here (PDF)

Design provides a simple method for maintaining an uninterrupted +5V even while switching between the external +5V supply and a rechargeable single-cell Li+ battery.

Get a constant +5V output by switching between a +5V input and a single-cell LI+ rechargeable cell – [Link]

Buck battery charger handles multiple chemistries

4015

by Susan Nordyk @ edn.com:

The LTC4015 synchronous step-down battery charger controller from Linear Technology offers charge current of up to 20 A, multiple-chemistry operation, and onboard digital telemetry. The controller transfers power from a variety of input sources, such as wall adapters and solar panels, to a Li-Ion polymer, LiFePO4, or lead-acid battery stack with system load up to 35 V.

Operating over an input voltage range of 4.5 V to 35 V, the LTC4015 provides ±5% charge-current regulation up to 20 A and ±0.5% charge-voltage regulation. While a host microcontroller is required to access the most advanced features of the LTC4015, the use of an I2C port is optional.

Buck battery charger handles multiple chemistries – [Link]

How to make a USB Li-Ion charger

IMG_2060

by Robert Gawron @ robertgawron.blogspot.com:

Li-ion cells become more and more popular due to their capacity and reasonable prices. In this entry I will present how to build a simple li-ion battery charger based on MCP73831 chip. It’s a quite useful device for DYI projects,in addition its cost is only around 1,5 euro.

The device uses USB port as a power supply (mini-USB connector). I use the standard gold-pins as an output socket. There’re three of them, but only two are used (looking on the image, counting from top: V+, V-). I will design my li-ion based devices in the same way (same socket, but female), then if I will connect it in the incorrect direction (rotated 180 degrees) they won’t be damaged (V- connected to V-, but V+ connected to n/c pin) – simple way to avoid plugging in an incorrect way.

How to make a USB Li-Ion charger – [Link]

Research Points the way to Safer Lithium Batteries

20150629013013_lithiumDendrite

by Martin Cooke @ elektormagazine.com:

A paper published in the June 17th edition of Nature Communications describes how the addition of two chemicals to the electrolyte of lithium metal batteries can prevent the formation of dendrites. These are needles of lithium which grow in the battery and eventually puncture the barrier between the two battery halves. Their formation can cause short circuits in the battery which leads to overheating and sometimes combustion.

According to the paper this breakthrough could help remove a major barrier to the future development of lithium-sulfur and lithium-air batteries. These promising new battery technologies could store up to 10 times more energy per weight than batteries in use today in consumer electronics and electric cars.

Research Points the way to Safer Lithium Batteries – [Link]