Tag Archives: Linux

RandA, Combining Raspberry Pi & Arduino

Two years ago, open electronics had produced “RandA“, an Atmega328-based board for Raspberry Pi to deliver the advantages of both, Raspberry Pi and Arduino. Earlier this month, an updated version of RandA has been released to be compatible with Raspberry Pi 3.

RandA is a development board that leverages the hardware equipment and the computing power of Arduino with its shields, and the enormous potential of the Raspberry Pi. It features Atmega328 microcontroller, has RTC (Real Time Clock) module, power button and sleep timer, connectors for 5 volts and connectors for mounting Arduino shield.

Combining these two platforms is a way to exploit specific characteristics of both. Raspberry Pi could use Arduino as configurable device, and Arduino might work as a controller for Raspberry Pi allowing access to complex environments like the network, allowing complex processing or access to multimedia.

RandA was created at first for Raspberry Pi 2 and B+, using the first 20 pins to connect them, the serial port for programming the Atmega328 and for communication with Raspberry Pi. With the enhancements that come with the third version of Raspberry Pi, such as upgrading CPU to a quad-core 64 bit ARMv8 clocked at 1.2 GHz and adding WiFi and Bluetooth transceivers, there were some structure modifications that require updating the RandA.

Raspberry Pi 3 uses the standard UART0 serial port for connection via the Bluetooth interface equipping version 3. Therefore, it is no longer available on GPIO14/15 as it was in the first and second version of Raspberry Pi. The secondary UART1 serial is configured on those pins instead, but this serial port is based on a simulated serial not on a preset UART hardware. In particular, its clock is connected to the frequency of the clock of the system which varies in function of the load in order to save energy.

To solve this, the software is configured to recover the UART0 on GPIO 14/15 pins without modifying any hardware parts. This way will disable the Bluetooth peripheral, but the WiFi is still working and you can use Bluetooth by connecting a Bluetooth dongle via USB.

To know more about the new version of RandA you can review this post, and reading this post to learn more about RandA in general. You can get your RandA board for about $36 and this tutorial will help you get starting with it.

PandwaRF, A Portable Radio Analysis Tool

PandwaRF, is a portable low-power RF device that captures, analyses and re-transmits RF signals via an Android device or a Linux PC. It uses Bluetooth (BLE) or USB connection to transmit data in a simple and fast way, comes in the form of a controllable housing from a smartphone or a computer.

This pocket-size device operates at sub-1 GHz range, and it replaced the ‘standard SDR Grind’ of capturing, demodulating, analyzing, modifying and replaying by hand with a simple powerful interface.

The PandwaRF consists of a capable hardware device, tailored for beginners and advanced users, with an application that runs either on an Android device or on a PC. The Android interface provides full functionality to control and customize the PandwaRF easily using JavaScript.

Technical details of the PandwaRF:

  • Bluetooth Smart Module ISP130301, based on nRF51
  • CC1111 Low-Power SoC with Sub-1 GHz RF Transceiver
  • Multi frequencies (from 300 MHz to 928 MHz)
  • Multi modulation (ASK/OOK/MSK/2-FSK/GFSK)
  • Transmit and receive in half duplex mode
  • Support data rates up to 500 kBaud
  • Open hardware
  • Full speed USB: 12 Mbps (Linux or Android)
  • Bluetooth Smart 4.0 (Android/iOS)
  • USB charging & battery powered
  • 4 buttons to assign codes
  • 4 Status LEDs
  • 16 Mbit Flash Memory to save custom RF protocols
  • Rechargeable battery powered for stand-alone operation
  • Battery fuel gauge
  • RX amplifier for improved sensitivity: +13dB from 300MHz-1GHz
  • TX amplifier for higher output power: +20dB @ 433MHz & +17dB @ 900MHz
  • SMA connector for external antenna
  • Antenna port power control for external LNA
  • 22-pin expansion and programming header
  • Included: Battery and injection molded plastic enclosure

PandwaRF features are not fully complete yet, the developers had finished captured data processing offload, radio scripting (JavaScript & Python), RF packet sniffer, and spectrum analyzer. Other features are still in development process.

The device is available in three options, the Bare version is about $120 and comes without housing and without battery, the standard version is about $142 with battery and black case, in addition the extended version with enhanced features.

You can reach more information and order your PandwaRF on the official website.

Jump Over The Limits of ARM With ExaGear Desktop

While the most of Linux programs are compiled to run on Intel x86 processors, the virtualization softwares appear to give the ability to run Intel x86 application on ARM-based Mini PC such as Raspberry Pi.

In this way, Eltechs, a high-tech startup company, had produced a new binary translator called “ExaGear Desktop”. It runs applications for the conventional desktop and server x86 processors on energy-efficient ARM CPU without recompilation.

ExaGear Desktop creates a second system known as the ‘guest’ system. Once installed, you can switch between the guest and your regular (‘host’) system using the ExaGear and exit commands. Inside the guest system, apt-get and dpkg are used to install Intel x86 software. The guest system is a transparent operation so there is no difference between running x86 applications on x86-based or ARM-based platform. It also gives you the ability to run Windows applications by installing Wine.

ExaGear is compatible with many of ARM-based Mini PCs such as Raspberry Pi 1, Raspberry Pi 2, ODROID, CubieBoard, CuBox, Utilite, Jetson TK1, Wandboard, Banana Pi etc. It also can run on Chromebook with Linux.

Compared with QEMU, another open-source virtualization software, ExaGear is  5 time faster and has  much better performance with CPU and memory as the benchmark results shown when running on Raspberry Pi 2. You can see the benchmarking details and results here.

ExaGear is available for ordering through the official website with a price range between $16.45 and $56.45 according to the hardware used. You can find more information at the product page. And it may be useful to take a look at this review.

Virtualette V1, A Tiny Powerful Microcomputer

Designed by SRKH Designs, Virtualette V1 is a small dual stack microcomputer that can run Android and Linux operating systems, for network-wide IoT and mobile edge computing solutions and electronics DIY projects.

Virtualette V1 is designed based on the dual-core Cortex-A7 Allwinner A20 SoC, with 1GB DDR3L base memory, 8GB onboard NAND flash, and a 32GB microSD card. It also includes a real time clock, onboard battery and wakeup function, and 80 IO pins.

The microcomputer is consist of dual connected PCBs with 7.6cm x 3.7cm x 1.8cm size including mounting feet. It has an Ethernet jack, a USB port to connect mouse or keyboard, microSD card slot, SATA port, and mini USB ports.

Virtualette V1 is a low energy device with a typical 2.4W of energy draw with three power options; 9-48V PoE (Powered over Ethernet), 5V USB OTG, and a lithium battery.

You can run any of linux-based operating system on the V1, in addition to the optimized linux distribution that will be shipped with it. Users can change the OS by swapping over the micro SD card and they have the option of booting from an external microSD card or from the onboard NAND 8GB flash.

Additional storage can be added by inserting a USB2 drive or external hard drive (SATA compatible). V1 can be optionally booted by USB or a dedicated SPI ROM port.

Virtualette V1 Playing DVD via SATA

Examples of V1’s potential capabilities are:

  • As an individual desktop device or controller for a drone or robot.
  • As a liquid-cooled computer inside a 40mm PVC pipe.
  • As M2M nodes in a distributed intelligent security system.
  • Deployed as a peer-to-peer, machine-to-machine network in applications such as display information systems in airports or train stations.

With the launch of their Kickstarter campaign, SRKH Designs aims to raise funding of US$22.5k, offering backers Virtualette V1 devices from the first production run as their reward.

Post campaign, a roadmap of hardware products for the Virtualette range is planned. This includes future quad-core and octa-core versions, an add-on FPGA-based development board, a desktop platform, popular video adaptor interfaces and an ‘All in One’ peripheral board designed to embed V1 inside a slimline display case.

Turn Your Raspberry Pi Into A Wi-Fi Drone Disabler

Note: The information presented here is for educational purposes. This tutorial is designed to help users understand the security implications of using unprotected wireless communications by exploring its use in a popular drone model: the Parrot AR.Drone 2.0. It’s illegal to access computer systems that you don’t own or to damage other people’s property, the techniques should only be performed on devices that you own or have permission to operate on.

Using a Raspberry Pi with a touchscreen, and running a couple of simple Bash scripts, Brent Chapman built a device that will drop Wi-Fi controlled drones right out of the sky with just a tap of your finger.

wifijammer

The device concept is finding the unsecured Wi-Fi access point used by the pilot smartphone or tablet to control the drone, then log on to the drone’s default gateway address, and shuts down the system from the inside without the pilot knowing.

This will only work on some models of drones which use Wi-Fi as the interface between the controller and the drone, such as Parrot’s Bebop and AR.Drone 2.0, that are entirely controlled via Wi-Fi.

The AR.Drone 2.0 is an ideal platform for experimentation and learning thanks to its many impressive features and sensors plus its low cost. It creates an access point named “ardrone2_” followed by a random number, that the user can connect to via a smartphone. This access point is open by default with no authentication or encryption. Once a user connects the device to the access point, he or she can launch the app to begin control of the drone.

raspberry_pi_2298-15

At first, you have to connect the Raspberry Pi with a touchscreen, this guide by adafruit might be helpful. When they are ready, the next step is preparing couple of bash scripts. The first is named “join_network.sh”, and it used to make the Pi automatically join the AR.Drone 2.0 access point.

image4

The second script is named “poweroff.sh”,it will initiate a telnet connection to the drone, then send the command of poweroff, which tells the drone to shut everything down.

image6

The last step is building a “Cantenna”, a DIY directional antenna made of a can to boost the wireless signal. You just need to drill a hole on an empty can to hold a N connector then connect it to Wi-Fi card.

cantenna6

Keep in mind, you should only try this tool on your own personal drones safely and at your own risk. You can find the complete guide at this link at makezine.

Meet NanoPi NEO The New Hero – The 8 $ Computer

Meet NanoPi NEO the latest member in NanoPi family from FriendlyARM.

NanoPi-NEO-layout

NanoPi NEO features Allwinner H3 CPU, a Quad-core Cortex-A7 Up to 1.2GHz CPU.
It’s available with 256MB DDR3 RAM or 512MB one with additional 2$ for the last one.

The board has 10/100M Ethernet RJ-45 jack, USB host type A connector, MicroUSB connector for data transmission and power input, one MicroSD slot, serial debug header and 36 pins for GPIO.

NanoPi-NEO_en_pinout

The supported OS for NanoPi NEO are: Ubuntu Core, armbian and FreeBSD.

Raspberry Pi Zero - Image courtesy of Adafruit
Raspberry Pi Zero – Image courtesy of Adafruit

Raspberry Pi Zero, the 5$ computer, had  Broadcom BCM2835 1GHz ARM11 single-core processor, 40-pin GPIO header, mini-HDMI socket for 1080p60 video output and two MicroUSB one for power and one for data transmission with 40mm  x 40mm dimension.

NanoPi price is 8$ plus 5$ for shipping, you can order some accessories like MicroSD card memory and USB power adapter from the product page.

Product Page

NanoPi NEO Schematic
Via: elektormagazine

Crowdfunding closing on $5 Linux + Wifi tiny IoT compute module

6c15c56111eae091b957a1640ea8e56e_original

World’s smallest Linux server, with Wi-Fi built-in. Omega 2 is a Linux compute module designed specifically for building connected hardware applications. It combines, say its designers Onion, “the tiny form factor and power-efficiency of the Arduino, with the power and flexibilities of the Raspberry Pi.” By Graham Prophet @ edn-europe.com

Omega 2 development is the subject of a Kickstarter campaign, that closes on August 23 rd 2016 ( here). The projects starts with the base module, which is an SoC-based board with built-in WiFi, and extends through levels of added connectivity, and peripherals – for example, there is a ‘dock’ card that provides compatibility with Arduino-format hardware. Part of Onion’s offering is a cloud service, so that an Omega 2-based project can be fully cloud-connected and -enabled.

Crowdfunding closing on $5 Linux + Wifi tiny IoT compute module – [Link]

Exploring the Transcend Wifi-SD card

Transcend-WifiSD-16Go-512px_805434CD

James O’Neill explores a Transcend SD that he believes it’s the smaller Linux server. It’s actually a 16GB memory card, an ARM processor and a WIFI chip all in an SD card package.

The way these cards works is different from the better known Eye-FI card. They are SERVERS : they don’t upload pictures to a service by themselves, instead they expect a client to come to them, discover the files they want and download them. The way we’re expected to do this is using HTTP , either from a web browser or from an App on a mobile device which acts as wrapper for the same HTTP requests.

Exploring the Transcend Wifi-SD card – [Link]

VoCore: A Cheap And Coin-sized Linux Computer With Wi-Fi

a21aee697d974dc9893d683674ffc5a194390a90_main_hero_image

VoCore is an open source hardware that runs OpenWRT Linux. This tiny computer comes with Wi-Fi, USB, 20+ GPIOs that will help you to embed it on your projects.

With each passing day, mini computer boards are getting more and more popular. Single board computers like Raspberry Pi, CHIP, OrangePi etc. are being endorsed by makers and DIY enthusiasts to create new innovations. However, if you are looking for an even smaller Linux computer, VoCore is the perfect device for you.

VoCore: A Cheap And Coin-sized Linux Computer With Wi-Fi – [Link]

Setting Up Python web server for Raspberry Pi

PiHttpServer-2

Sankar Cheppali will show us how to setup a python based web server to serve simple html pages to the clients using Raspberry Pi.

Serving web pages from embedded devices is not easy task as embedded devices have limitations in processing power , memory available etc. But with Raspberry Pi this task becomes very easy. We have lot of packages, programming platforms and libraries to chose from because pi is from Linux family.

Setting Up Python web server for Raspberry Pi – [Link]