Tag Archives: Linux

Epiq Solutions Develops Wideband RF Transceiver SDR Module Running Linux On Zynq SoC

Epiq Solutions, a company from the USA, has included a new member of its Sidekiq line of Software-defined radio (SDR) add-on cards called the Sidekiq Z2. Dimensions of this card are only 51 x 30 x 5mm, the size of a full-size mini-PCIe card, the Sidekiq Z2 computer-on-module is advertised as “the world’s smallest wideband RF transceiver + Linux computer in a product-ready module”. The module is most suitable for handheld RF testing and measurement, remote RF sensing, wireless security applications, and CubeSat/UAS datalinks. A carrier board is also available with this module.

Sidekiq Z2 SDR Module
Sidekiq Z2 SDR Module

Unlike previous Sidekiq cards, the Sidekiq Z2 can act as a standalone computer, running Linux on a Xilinx Zynq-7000 series Arm/FPGA SoC. Like the original Sidekiq, which is available in mini-PCIe or M.2 form factors, the Sidekiq Z2 operates at 70MHz to 6GHz. There’s also a Sidekiq X2, which uses the VITA57.1 FMC form factor, which supports 1MHz to 6GHz frequencies.

Epiq claims, the new Sidekiq Z2 can boot Linux in under two seconds, with a typical system power consumption under 2 Watts. The Zynq comes with 512MB DDR3L RAM and 32MB QSPI flash. The SoC drives USB 2.0 OTG, serial UART, JTAG, and GPIO signals to a carrier board.

The shielded AD9634 1Rx + 1Tx transceiver has a 4-band Rx pre-select filter bank and an up to 61.44 Msamples/sec sample rate. The 40MHz TCVCXO ref clock features +/- 1 PPM stability. The 3.3V, 8-gram module supports -40 to 85°C temperatures. The module also offers many U.FL antenna connectors.

The company offers a Sidekiq Z2 Evaluation Kit (EVK) that includes two Sidekiq Z2 cards pre-loaded and supported by Analog Devices’ open source IIO reference design, along with two simple carrier cards. An optional Platform Development Kit (PDK) offers enhanced support and an optimized FPGA reference design to maximize processing capability of the FPGA. Epiq Solutions also presents applications for embedded RF spectrum analysis as well as 2G/3G/4G cellular network survey.

The Sidekiq Z2 is available now at a price of $649 for 1,000+ unit orders. The Sidekiq Z2 EVK and PDK also appear to be available, with pricing undisclosed. More information may be found in the Epiq Solutions Sidekiq Z2 announcement and product page.

Banana Pi BPI-W2 SBC – A Multimedia Router And NAS Board That Runs Android Or Linux

SinoVoip has released Banana Pi BPI-W2 multimedia network and smart NAS router SBC. The BPI-W2 has a faster processor and more advanced features than last year’s Banana Pi BPI-R2. However, the new model has only two Gigabit Ethernet ports instead of four.

This SBC is designed for applications such as high wireless performance, home entertainment, home automation, and many more. The BPI-W2 runs on a Realtek RTD1296 SoC with 4x Cortex-A53 cores clocked at up to 1.5GHz with a high-end Mali-T820 MP3 GPU. By comparison, previous year’s BPI-R2 used a quad-core, Cortex-A7 MediaTek MT7623 with a Mali-450 MP4. SinoVoip confirms full support for Android 6.0CentOSDebian 9Raspbian, and Ubuntu 15.04, and the board is also said to support OpenWrt.

Banana Pi BPI-W2
Banana Pi BPI-W2

The updated I/O support is shown in the BPI-W2’s dual SATA III ports, compared to only one on the single SATA interface found on the MT7623-based BPI-R2 and RTD1295-based devices. The BPI-W2 also has 8-64GB eMMC, a microSD slot, and 2GB of DDR4.

Although limited to dual GbE ports, the board also has a GbE WAN port for router applications. Unlike the R2, there is an HDMI input in addition to the HDMI output, and a mini-DisplayPort has replaced the earlier MIPI-DSI connection. In either case, the output resolution is still limited to HD (1080p) only.

Four USB ports are available, including single USB 3.0 and Type-C ports. There is a 40-pin header that is claimed to support Raspberry Pi 3 add-on boards. Other features involve RTC, IR, debug, audio I/O, and a 12V input.

Like other Banana Pi boards, the BPI-W2 is open source, shipping with schematics and other documentation. The AliExpress and wiki pages list and show PCIe 2.0 and 1.1/SDIO slots on the front as well as a single M.2 slot on the back. Yet the PCIe slots are also tagged as M.2 slots (E-Key), and it’s unclear which slots are capable of what. The PCIe slots are capable to support up to 802.11ac WiFi, and there’s also a SIM card slot.

The Banana Pi BPI-W2 is available now for $93 plus shipping on AliExpress. More information may be found on the BPI-W2 wiki page.

Compact COM Express-based subsystem packs plenty of DAQs

Zeta is a Single Board Computer (SBC) from Diamond Systems that combines a COM Express Mini Type 10 module based on Apollo Lake or Bay Trail SoCs with a DAQ-rich carrier, and a heat spreader mounted below. The Zeta COM Express Mini Type 10 supports the quad-core Atom E3940 and Pentium N4200 from Intel’s Apollo Lake generation, as well as a dual-core Atom E3825 from the earlier Bay Trail family. Measures 84mm by 55mm, Diamond, Creators of Zeta do not promote their creation as a standalone Computer -on-Module product mostly because of its extra add-ons and functionality.

Diamond Systems Zeta

According to Diamond, the 84 x 55mm Zeta offers functionality and performance equivalent to Diamond’s Bay Trail-based Aries PC/104 SBC, at just 40 percent of its 116 x 102mm size.

The Zeta processor choice can be obtained in two Stock Keeping Units (SKUs), one has 16x DIO lines while the other has an FPGA-driven data acquisition circuit that replaces the 16x DIO with a 27x DIO connector. The second SKU also adds 4x channels of 16-bit digital outputs, eight 32-bit timers, 16x channels of 16-bit analog inputs among other features.

The Zeta offers 2GB, 4GB, or 8GB RAM depending on the type of processor chosen. There’s also a microSD slot, as well as a mini-PCI express slot with mSATA support. Standard features include 2x GbE, VGA, LVDS, USB 3.0, 4x USB 2.0, and 4x RS-232/422/485. It also comes with an optional daughter board to act as an expansion set. The daughter board has a full-size mini-PCI express slot, an M.2 M-key 2242 for an SSD, and audio I/O.

General Specifications for the Zeta Serial Board Controller are:

  • Processor — Intel Apollo Lake or Bay Trail:
    • Atom x5-E3940 — 4x Apollo Lake cores @ 1.6GHz/1.8GHz; 9W TDP
    • Pentium N4200 — 4x Apollo Lake cores @ 1.1GHz/2.5GHz; 6W TDP
    • Atom E3825 — 2x Bay Trail cores @ 1.33GHz; 6W TDP
  • Memory & Storage:
    • 2GB (E3825), 4GB (E3940) or 8GB (N4200) RAM
    • MicroSD slot (bootable for Linux)
    • mSATA via mini-PCIe slot
    • M.2 M-key 2242 for SSD on an optional daughterboard
  • Display — VGA; LVDS
  • Networking — 2x Gigabit Ethernet
  • Expansion Options:
    • Mini-PCIe slot with PCIe, USB, and mSATA support.
  • Expansion daughterboard:
    • Full-size mini-PCIe slot with PCIe and USB
    • HD audio (Realtek ALC892) line-in, mic-in, line-out
    • 16x DIO (via I2C) with configurable 3.3V/ 5V logic levels and Pull-up/down resistors
  • Other I/O:
    • USB 3.0
    • 4x USB 2.0
    • 4x RS-232/422/485 (software-programmable with termination)
    • 16x DIO with selectable 3.3V/5V logic levels
    • Optional DAQ circuit (separate SKU):
    • 27x DIO with selectable 3.3V/5V logic levels (replaces original 16x DIO)
    • 16x 16-bit analog inputs
    • +/-10V, +/-5V, 0-10V, and 0-5V input ranges
    • 100KHz max sample rate with 2048-sample FIFO
    • 8x differential voltage inputs
    • 4x channels of 16-bit analog outputs
    • 8x 32-bit counter/timers.
    • 4x 24-bit PWMs
  • Power — Optional 9-36V input
  • Operating temperature — -40°C to 85°C
  • Dimensions — 84mm x 55mm (COM Express Mini Type 10)
  • Operating system — supports Linux (Ubuntu 16.04) and Windows 10 IoT with optional SDKs
  • Other features — watchdog; heat spreader; dev kit version with cables and SDKs
Block Diagram

Zeta’s small size and high feature density make it an ideal choice for mobile applications. It stands ready to meet the challenges of these environments with a wide range 6-36VDC input voltage, a -40 to +85°C operating temperature range, and fanless heat spreader cooling (heat sink options are available). Zeta is available for order online at an undisclosed price. More information for the Diamond Systems Zeta can be found on the product page.

OSD3358-SM-RED – A Reference, Evaluation, And Development Board From Octavo Systems

The OSD3358-SM-RED from Octavo Systems is a reference, evaluation, and development board for the OSD335x-SM series of System-in-Package (SiP) devices. It is powered by a 1 GHz processor, ADC, and 1 GB of DDR2 RAM into an enclosure of the size of a coin.

OSD3358-SM-RED single-board computer

The SiP needs a PCB, along with components like an Ethernet jack, power supply, IO pins, and USB sockets to communicate with the other complimentary electronic parts. These boards include several power options, including a micro-USB connector, barrel jack, and solder points for battery usage. Ethernet and USB connectors are included, along with expansion connectors setup so that BeagleBone Black Capes can be connected directly. Finally, a 9-axis IMU, barometer, and temperature sensor are included. Data from sensors can be collected directly without the help of extra hardware or software.

This board is longer and slightly wider than a Raspberry Pi, at an exact dimension of 108 x 54 mm. It’s also thicker at 32 mm due to the decision to mount the Ethernet jack on top of the two USB ports. A micro-SD card slot is included, though WiFi capability is not provided. For internet connectivity, the user needs to rely on wired or dongle connection.

It comes pre-loaded with a Debian Linux distribution, complete with drivers for the onboard sensors already available. It can also boot off of the SD card to load other Operating Systems. This board can be used in one of three ways: as a standalone device, a USB client, or using a UART port as a Linux terminal. In the standalone case, the user simply connects the micro-USB connector to an appropriate power source, then to a monitor via a micro-HDMI to HDMI adapter. Once booted up, the screen goes to a minimal Linux install, allowing the user to access a web browser, terminal, and other necessary tools that a developer can build upon.

At a cost of $199, this board wouldn’t be an appropriate substitute for a Raspberry Pi or BeagleBone in standalone situations, but it will certainly be useful for a professional upgrade to OSD335x-SM SiPs.

Linux-driven COM And Carrier Board Powered by Zynq SoC

MYIR Tech has launched an $85 module, Xilinx Zynq-7010 or -7007S that runs on MYC-C7Z010/007S CPU Module. MYC-C7Z010/007S CPU Module is a part of their newly launched sandwich-style, $209 MYD-Y7Z010/007S Development Board. There’s an open source Linux 3.15.0 based BSP for the module, and the MYD-Y7Z010/007S carrier board ships with schematics. Both the module and development board can withstand -40 to 85°C temperature range.

MYC-C7Z010/007S CPU Module

MYC-C7Z010/007S CPU Module
MYC-C7Z010/007S CPU Module

Xilinx’s Zynq-7010 has dual-core Arm Cortex-A9 block as the Zynq-7015 or Zynq-7020, which is available along with the Z010 on the earlier MYC-C7Z010/20 module. However, the Zynq-7010 SoC has more FPGA logic cells (28K). On the other hand, the Zynq-7007S is limited to a single Cortex-A9 core and a 23K logic cell FPGA. The Zynq-7010 ranges from 667MHz to 866MHz while the 7007S can operate from 667MHz to 766MHz.

The MYC-C7Z010/007S has 75 x 50mm dimension. It ships with 512MB DDR3 SDRAM4GB eMMC, and 16MB quad SPI flash. There’s a Gigabit Ethernet PHY and external watchdog. A 1.27mm 180-pin stamp-hole (Castellated-Hole) expansion interface is also there for ARM and FPGA interfaces that are useful to improve shock resistance. Supported I/O incorporates single USB and SDIO interfaces plus a pair of serial, I2C, CAN, SPI, and 16-channel ADC.

MYD-Y7Z010/007S dev board

MYD-Y7Z010/007S Dev Board
MYD-Y7Z010/007S Dev Board

The 153 x 80mm MYD-Y7Z010/007S Development Board expands the MYC-C7Z010/007S CPU module with 3x GbE ports, a USB 2.0 OTG port and a DB9 combo port with isolated RS232, RS485, and CAN signals. There’s also a microSD slot for memory expansion and a debug serial port.

An optional, $29 MYD-Y7Z010/007S I/O Cape plugs into the GPIO interface offering an HDMI port, a user button, and LCD, camera, and dual Pmod connectors. The LCD interface supports optional MYIR 7- or 4-inch capacitive and resistive LCD modules. The HDMI port only supports 720p resolution for now. The MYD-Y7Z010/007S board is further equipped with a reset key and boot switch. There’s also a 12V/2A DC input.

The MYC-C7Z010/007S module with the Zynq-7010 is available now for $85. The MYD-Y7Z010/007S Development Board is available with the Zynq-7010 based module for $209. More information is available at MYIR’s MYC-C7Z010/007S and MYD-Y7Z010/007S product pages.

New Mini-ITX Form Factor Open-X 8M Development Kit Is Built Around i.MX8M Module

The Canada based company Intrinsyc has announced the Open-X 8M System on Module (SOM) a month ago. Now Open-X 8M is followed up with a Mini-ITX form factor Open-X 8M Development Kit build. The kit includes a GbE port, dual USB 3.0 ports, M2 expansion, and much more user-friendly features.

Open-X 8M SOM

Intrinsyc Open-X 8M SOM front side
Intrinsyc Open-X 8M SOM front side

The Open-X 8M SOM can run Linux and Android 8.0 on the high-end Quad model of the i.MX8M, the same model used by most of the other i.MX8M boards. The i.MX8M Quad has 4x Cortex-A53 cores, single 266MHz Cortex-M4F, VPU, and Vivante GC7000Lite GPU chips. These CPU cores can be clocked in the range of 1.3GHz to 1.5GHz.

The Open-X 8M SOM comes with 3GB LPDDR4 RAM and 16GB eMMC. It includes a wireless module with 2.4/5.0GHz 802.11a/b/g/n/ac with the support of 2×2 MU-MIMO and Bluetooth 4.1. A Gigabit Ethernet controller is also there for wired connectivity. Visual output is available with the help of the module’s 3x 100-pin connectors. There is also support for HDMI 2.0a for up to 4096 x 2160 at a 60Hz resolution and 4-lane MIPI-DSI for up to 1920 x 1080 at 60Hz. There are also dual 4-lane MIPI-CSI2 camera inputs.

The Open-X 8M SOM is moreover equipped with 2x debug UART, 2x USB 3.0, 4-bit SDIO, JTAG, and PCIe Gen2 additional I/O ports. This 3.3V module has an NXP PF4210 PMIC, and it can operate in 0 to 70°C temperature range.

Open-X 8M Development Kit

Intrinsyc Open-X 8M Development Kit
Intrinsyc Open-X 8M Development Kit

The Open-X 8M SOM is the heart of the new Open-X 8M Development Kit. It has a footprint of 170 x 170mm, which classifies as Mini-ITX form factor. The board has a MIPI-DSI connector and choice for mounting an optional, smartphone-sized Open-X LCD/Touchscreen is available.

The Open-X 8M Development Kit includes USB 3.0 host, USB 3.0 Type-C, and HDMI 2.0a ports, as well as a microSD slot. A GbE port is available as an alternative to the module’s WiFi. There’s also a 3.5mm audio output jack. Dual MIPI-CSI2 connectors support is available for optional camera module attachment.

The Open-X 8M SOM and Open-X 8M Development Kit are available now. Though, pricing information is not available yet. More information may be found at Intrinsyc’s Open-X 8M SOM and Open-X 8M Development Kit product page.

PICO316 – The New Pico-ITX SBC Powered By Intel Apollo Lake Processors

Axiomtek, a Taiwan based company has introduced new Pico-ITX form factor SBCs using Intel’s Apollo Lake processor. This line of SBCs from Axiomtek started with PICO312 with minimal coastline ports, and then followed with a COM-like PICO313. Recently they launched a similar 100 x 72mm PICO316 SBC with more versatile ports than the original PICO312.

 

PICO316 SBC front side
PICO316 SBC front side
PICO316 SBC back side
PICO316 SBC backside

This PICO316 SBC is powered by Intel Pentium N4200 or Intel Celeron N3350 with Intel Gen9 Graphics. It supports up to 8GB DDR3L-1867 RAM. The SBC is compatible with most popular Linux kernels, such as RedhatFedoraUbuntu also runs Windows as well. The IoT focused board also supports Axiomtek’s exclusive device monitoring and remote management software, AXView 2.0.

While the PICO312 and PICO313 were restricted to a single USB 2.0 interface, the PICO316 upgrades to pack three USB 3.0 ports, two of which are Type-C ports. Like the PICO312, the PICO316 has an HDMI port to enhance the LVDS interface. As an extra feature PICO316 provides dual RS-232 interfaces. On the other hand, the new PICO316 loses the previously available DIO and half-size mini-PCIe interfaces found on the PICO313, as well as the pair of general expansion connectors found on both of the earlier models.

The PICO316 is further provided with a SATA III interface, a GbE port,  a full-size mini-PCIe slot with mSATA, an audio out jack, I2C, SMBus, and a watchdog. It runs on 5V, and it adds a -20°C to 70°C option in addition to the standard -20°C to 60°C.

Key Specifications for Axiomtek PICO316:

  • Processor: Intel Pentium N4200 or Intel Celeron N3350 (2.5GHz or 2.4GHz burst)
  • Graphics: Intel Gen9 Graphics
  • Memory: up to 8GB DDR3L-1867 via 1x SODIMM
  • Storage: SATA-600; mSATA via mini-PCIe
  • Display: HDMI port; 18/24-bit single/dual channel LVDS
  • Networking: Gigabit Ethernet port
  • Other I/O Ports:
  • USB 3.0 host port
  • 2x USB 3.0 Type-C ports
  • 2x USB interfaces
  • 2x RS232 interfaces
  • HD audio line-out jack
  • I2C, SMBus
  • Other features: watchdog, heatsink; an optional heat spreader
  • Operating temperature: -20 to 60°C or optional -20 to 70°C
  • Power: 5VDC input jack and 2x 2-pin connectors; Lithium 3V/220mAH battery; optional 5V/8A 40W adapter, 4-pin plug w/ lock
  • Dimensions: 100 x 72mm; Pico-ITX form factor
  • Operating system: Linux (Red Hat, Fedora, Ubuntu); Windows

The pricing and availability information may be found on Axiomtek’s PICO316 product page.

Emcraft’s Unveils a i.MX 8M System-On-Module and a $349 Starter Kit

Emcraft, which is known primarily for its work in porting uClinux to various high-end MCUs recently unveiled its NXP i.MX 8M System On Module (SOM) which is Linux driven and a Starter Kit for the i.MX 8M SoM. The starter kit gives Gbe, HDMI 2.0, USB 3.0, USB Type C and a Raspberry compatible 40 pin connection.

Emcraft i.MX 8M System-On-Module (SOM)

The 60 mm * 80 mm module is a mezzanine module that supports 512MB to 4GB of DDR3L or LPDDR4 RAM, up to 64GB eMMC 5.0 flash, a PMIC interface that supports WiFi-ac and Bluetooth 4.2 module with dual U.FL connectors. The i.MX 8M features up to four Cortex-A53 cores at 1.5GHz and a Cortex-M4 core for low-power and real-time operation.

The Emcraft i.MX 8M System-On-Module (SOM) supports only the quad-core version of the dual-core model. The i.MX 8M SoM hooks up to the Carrier board through a four 80-pin connectors. The i.MX 8M SoM starter kit is made up of two major items:

  • The i.MX 8M System On Module (SOM-IMX8M).
  • The development baseboard (IMX8M- SOM -BSB).

The i.MX 8M SoM Starter Kit extends out the features of the i.MX 8M SoM. The board features GbE, USB Type-C, USB 3.0 host, and micro-USB serial console ports. It also comes with some media interfaces like an HDMI 2.0 port, dual MIPI-CSI camera interface, and an audio I/O jack. The BSB baseboard also comes with a Raspberry Pi compatible 40 pin header, a 12V jack, dual Light Emitting Diodes (LEDs), an IR receiver, reset and multiple push buttons and a boot selection switch. The board supplies the Arm JTAG and Arm JTAG+ETM debug connectors. The block diagram also shows a Peripheral Component Interconnect Express-based M.2 expansion socket, a Real Time Clock with battery holder, and a Secure Digital (SD) slot.

Starter Kit

Emcraft supports Linux as an operating system for the i.MX 8M Cortex-A53 processor core. All i.MX 8M System-On-Modules come preloaded with Linux and U-Boot. Full source files of U-Boot and the Linux BSP are provided for free download, along with the Linux distribution and cross-development environment. Both U-Boot and Linux are royalty-free making it easy to incorporate into commercial products.

The Starter kit is available for pre-orders online for $349 and has shipping scheduled for May 2018. More information about the i.MX 8M System On Module and the Starter kit can be found on the product page. You can find documentation about setting up the Linux environment for the Emcraft i.MX 8M System-On-Module (SOM) here.

Program Pi, BeagleBone and Other Linux SBCs On The Arduino Create Platform

We have seen the massive ecosystem the Arduino has built and established over the last few years and this has made developing with Arduino quite leisurely. It is way easier to solve a programming issue or hardware issue with Arduino unlike other hardware boards mostly due to its community.  Arduino Create is an online platform by the Arduino Team that simplifies building a project as a whole, without having to switch between many different tools to manage the aspects of whatever you are making.

Arduino Create

Arduino Create is excellent especially for people already used to build stuff with Arduino boards, but what about the likes of Raspberry Pi, BeagleBones, and other makers board? The Arduino boards are great, especially the famous Arduino Uno, but this board still have it’s limitations too. The Raspberry Pi/BeagleBone on the other hand could take some task that the 16MHz Arduino Uno will never dream of doing, but this will also require makers and developers to begin learning new hardware (could be daunting for beginners). But this is changing now, as Massimo Banzi, CTO, and Arduino co-founder announced an expansion of Arduino Create to support Arm boards which will provide optimized support for the Raspberry Pi and BeagleBone boards.

Arduino Create now integrates Raspberry Pi, Beaglebone and other Linux based SBCs ─ all with IoT in mind. The introduction of ARM boards (Raspberry Pi, BeagleBone, AAEON® UP² board, and Custom ARM boards) follows the vision of the Arduino’s goal for the Create platform. A vision to build a full featured IoT development platform for developing IoT (Internet of Things) devices quicker, faster, and easier than ever before, intended for Makers, Engineers or Professional Developers. Arduino Creates brings the Arduino framework and libraries to all these SBCs, officially, changing the development game in a big way.

“With this release, Arduino extends its reach into edge computing, enabling anybody with Arduino programming experience to manage and develop complex multi-architecture IoT applications on gateways,” stated Massimo Banzi in a press release. “This is an important step forward in democratizing access to the professional Internet of Things.”

Raspberry Pi and other Linux based ARM boards can now leverage the community surrounding the Arduino Create Platform that offers support for step-by-step guides, examples, code, schematics and even projects. Although the SBC support is brand new, resources surrounding SBCs is sure to grow, in short time. Import from or sharing with the community is easy too.

Multiple Arduino programs can run simultaneously on a Linux-based board and interact and communicate with each other, leveraging the capabilities provided by the new Arduino Connector. Moreover, IoT devices can be managed and updated remotely, independently from where they are located.

Getting started with Arduino Create for the Linux SBCs is quite easy and straightforward. One merely connect the Raspberry Pi, or whatever SBC of choice to a computer and connect it to the cloud via Arduino Connect or via USB using the Arduino Plugin (This will make possible the communication between the USB ports on your PC and your Arm®-based Platform.). To start developing, upload sketches (programs) from the browser to the SBC. No need to install anything to get the code to compile, everything is up-to-date. This may become a standard way to develop on these platforms.

Arduino Create currently works with any board that runs Debian OS; a case for the Raspberry Rasbian, which is a Debian OS. To get started building with the Arduino Create for your ARM-based boards, visit the Arduino Create site, and click on the Getting Started while setting the board of your choice.

TS-4100 – A i.MX6 UL (UltraLite) Bases Hybrid SBC With FPGA And Programmable ZPU Core

Technologic Systems has begun testing its first i.MX6 UL (UltraLite) based board, which is also its first computer-on-module that can work as a single board computer. The footprint of 75 x 55mm TS-4100 module features a microSD slot, onboard eMMC, a micro-USB OTG port with power support, and optional WiFi and Bluetooth. This board offers long-term support and a temperature operating range of -40 to 85°C, and ships with schematics and open source Linux images (Ubuntu 16.04 and Debian Jesse).

Technologic System's Hybrid SBC TS-4100 (front)
Technologic System’s Hybrid SBC TS-4100 (front)

This board contains a low-power (4k LUT) MachX02 FPGA from Lattice Semiconductor. Technologic has improved the FPGA with an open source, programmable ZPU soft core that provides support for offloading CPU tasks as well as harder real-time on I/O interactions. The 32-bit, stack-based ZPU architecture offers a full GCC tool suite. In this implementation, it’s imbued with 8K of BlockRAM, which can be accessed by the i.MX6 UL, and has full access to all FPGA I/O.

The low-power i.MX6 UL and its power management IC are utilized to provide an efficient 300mW typical power usage. The module is equipped with 512MB to 1GB DDR3. The specification list concludes only 4GB MLC eMMC or 2GB of “robust” SLC eMMC as options, but the block diagram suggests you can load up to 64GB eMMC.

The TS-4100 is equipped with a pair of 10/100 Ethernet controllers plus LCD and I2S interfaces for media connectivity. There are also several serial and USB interfaces along with the micro-USB OTG port. Other interfaces are listed as an accelerometer, gyro, SPI, I2C, and PWM and 2 separate CAN buses.

Key specifications for the TS-4100:

  • 512MB to 1GB DDR3 RAM
  • 4GB MLC eMMC or 2GB SLC eMMC (possibly up to 64GB eMMC)
  • MicroSD slot
  • Wireless — 802.11 b/g/n with antenna; Bluetooth 4.0 BLE
  • 2x 10/100 Ethernet controllers
  • Parallel LCD
  • I2S audio
  • Micro-USB OTG port (with power support)
  • USB 2.0 OTG (with power support)
  • 2x RS232
  • RS232 for Linux console
  • SPI, I2C, 2x CAN buses
  • Optional FPGA/ZPU-linked 16-pin expansion header (5x DIO, 1x SPI, 1x I2C) for optional daughter cards
  • 46x DIO (linked to FPGA)
  • 8x PWM
  • Accelerometer/gyro
  • 5V input via USB or via baseboard
  • 0.3W typical consumption
  • Operating temperature — -40 to 85°C
  • Dimensions — 75 x 55mm
  • Operating systems — Linux 3.14.52 (Ubuntu 16.04 and Debian Jessie)