Tag Archives: Linux

TS-4100 – A i.MX6 UL (UltraLite) Bases Hybrid SBC With FPGA And Programmable ZPU Core

Technologic Systems has begun testing its first i.MX6 UL (UltraLite) based board, which is also its first computer-on-module that can work as a single board computer. The footprint of 75 x 55mm TS-4100 module features a microSD slot, onboard eMMC, a micro-USB OTG port with power support, and optional WiFi and Bluetooth. This board offers long-term support and a temperature operating range of -40 to 85°C, and ships with schematics and open source Linux images (Ubuntu 16.04 and Debian Jesse).

Technologic System's Hybrid SBC TS-4100 (front)
Technologic System’s Hybrid SBC TS-4100 (front)

This board contains a low-power (4k LUT) MachX02 FPGA from Lattice Semiconductor. Technologic has improved the FPGA with an open source, programmable ZPU soft core that provides support for offloading CPU tasks as well as harder real-time on I/O interactions. The 32-bit, stack-based ZPU architecture offers a full GCC tool suite. In this implementation, it’s imbued with 8K of BlockRAM, which can be accessed by the i.MX6 UL, and has full access to all FPGA I/O.

The low-power i.MX6 UL and its power management IC are utilized to provide an efficient 300mW typical power usage. The module is equipped with 512MB to 1GB DDR3. The specification list concludes only 4GB MLC eMMC or 2GB of “robust” SLC eMMC as options, but the block diagram suggests you can load up to 64GB eMMC.

The TS-4100 is equipped with a pair of 10/100 Ethernet controllers plus LCD and I2S interfaces for media connectivity. There are also several serial and USB interfaces along with the micro-USB OTG port. Other interfaces are listed as an accelerometer, gyro, SPI, I2C, and PWM and 2 separate CAN buses.

Key specifications for the TS-4100:

  • 512MB to 1GB DDR3 RAM
  • 4GB MLC eMMC or 2GB SLC eMMC (possibly up to 64GB eMMC)
  • MicroSD slot
  • Wireless — 802.11 b/g/n with antenna; Bluetooth 4.0 BLE
  • 2x 10/100 Ethernet controllers
  • Parallel LCD
  • I2S audio
  • Micro-USB OTG port (with power support)
  • USB 2.0 OTG (with power support)
  • 2x RS232
  • RS232 for Linux console
  • SPI, I2C, 2x CAN buses
  • Optional FPGA/ZPU-linked 16-pin expansion header (5x DIO, 1x SPI, 1x I2C) for optional daughter cards
  • 46x DIO (linked to FPGA)
  • 8x PWM
  • Accelerometer/gyro
  • 5V input via USB or via baseboard
  • 0.3W typical consumption
  • Operating temperature — -40 to 85°C
  • Dimensions — 75 x 55mm
  • Operating systems — Linux 3.14.52 (Ubuntu 16.04 and Debian Jessie)

Odroid-N1 Features Gigabit Ethernet And Can Run Android 7.1, Ubuntu, Debian

The Rockchip RK3399 has revolutionized the open-spec single-board computer world. Hardkernel’s new Odroid project has made the multi-core SoC RK3399 to firm it’s grip further. Recently Hardkernel released images, specs, and extensive benchmarks on a prototype for its storage-oriented new Odroid-N1 board. The boards can be expected to launch for about $110 in May or June this year.

New Odroid-N! based on Rockchip's RK3399
New Odroid-N1 based on Rockchip’s RK3399

The 90x90x20mm SBC is highlighted for offering dual channel SATA III interfaces and 4GB DDR3-1866 dual-channel RAM. The Odroid-N1 can run Android 7.1, as well as Ubuntu 18.04 or Debian 9 with Linux Kernel 4.4 LTS. This new board can also be open source as its previous flagship Odroid-XU4.

The RK3399 features two Cortex-A72 cores that are clocked at up to 2.0GHz, as well as four Cortex-A53 cores, which are clocked at 1.5GHz. (Some other RK3399 boards have listed 1.42GHz.) This board also includes a high-end ARM Mali-T864 GPU. Hardkernel’s benchmarks have shown the hexa-core RK3399 based Odroid-N1 is running significantly faster on most tests, beating the Odroid-XU4’s octa-core (4x Cortex-A15, 4x -A7).

The Odroid-N1 is equipped with a GbE port, 2x USB 3.0 ports, and 2x USB 2.0 ports, HDMI 2.0 port for up to 4K Video output. There’s also a 40-pin GPIO header. The Power input is mentioned at 12V/2A, although attaching two 3.5inch HDD will require a 12V/4A PSU. As with the other RK3399 boards, there are no hopes of Raspberry Pi add-on compatibility.

The RK3399 has powered many similar SBCs previously. The first major RK3399 SBC was Firefly’s Firefly-RK3399, soon followed by Vamrs’ similarly open source Rockchip RK3399 Sapphire. More recently we’ve seen Shenzhen Xunlong’s Orange Pi RK3399.

The RK3399 is also finding key roles among many commercial boards. We just saw Aaeon take the leap with its OEM-oriented RICO-3399 PICO-ITX SBC. Earlier, Videostrong announced a VS-RD-RK3399 SBC.

ODROID-N1 key features:

  • Rockchip AArch64 RK3399 Hexa-core processor
  • Dual-core ARM Cortex-A72 2Ghz processor and Quad-core ARM Cortex-A53 1.5Ghz processor, big-LITTLE architecture
  • Mali-T860MP4 GPU, support OpenGL ES1.1/2.0/3.0, OpenCL 1.2
  • 4Gbyte DDR3-1866 RAM, Dual channel interface for 64bit data bus width
  • 2 x SATA3 port, native SATA implementation via PCIe-gen2 to SATA3 interface
  • eMMC 5.0 (HS400) Flash storage and a UHS capable micro-SD slot.
  • 2 x USB 3.0 host port
  • 2 x USB 2.0 host port.
  • Gigabit Ethernet port
  • HDMI 2.0 for 4K display
  • 40-Pin GPIO port
  • OS: Ubuntu 18.04 or Debian Stretch with Kernel 4.4 LTS, Android 7.1
  • Size: 90 x 90 x 20 mm approx. (excluding cooler)
  • Power: 12V/2A input (Attaching two 3.5inch HDD requires a 12V/4A PSU)
  • Price: US$110 (To be adjusted based on DRAM market price changes)
  • Mass production schedule: TBD

More information is available in the Odroid-N1 announcement.

New Powerful Nano-ITX Form Factor ADL120S Single Board Computer For IoT

USA based ADL Embedded Solutions has introduced a new rugged, Nano-ITX form factor ADL120S single board computer (SBC). It is mainly produced for IoT, networking, and cyber-security applications. The highlighted feature of this SBC is its wide variety of PCIe expansion slots. The SBC includes 8x stackable PCIe interfaces, as well as optional custom expansion board services. Also, you get dual M/2 Key-B 2280 interfaces that support PCIe/SATA with USB 3.0. Networking is taken care with 4x Gigabit Ethernet ports (1x with PXE boot and WoL).

ADL120S Single Board Computer by ADL Embedded Solutions

 

The ADL120S runs Linux or Windows OS on dual- or quad-core Intel 6th Gen (“Skylake“) processor and Celeron CPUs that support an LGA1151 socket. There’s an Intel Q170 chipset on ADL120S instead of a Q170HDS. The supported SKUs include the quad-core 2.4GHz Core i7-6700TE, the dual-core 2.7GHz i3-6100TE, and 2.3GHz Celeron G3900TE.

The board has a compact dimension of 120 x 120mm in a Nano-ITX form factor but has a high vertical profile with 4x USB 3.0 ports piled on a single column. This high-rise board also includes 4x GbE ports, one of which has WoL and PXE Boot, and a pair of DisplayPort 1.2 ports with 4096 x 2304 resolution at 60Hz refresh rate.

The ADL120S comes with up to 32GB DDR4 RAM and offers a wide-range 20-30VDC (optional 12-24V or 20-36V) input and RTC (Real time clock) with battery. The boards with -20 to 70°C or -40 to 85°C temperature range of usability are available.

The SBC is also praised for its high MTBF, long-life availability, hardware and firmware revision control, obsolescence management, and technical, engineering and design support, on their website’s product page.

No pricing or availability information was provided for the ADL120S.

First Orange Pi SBC Powered By Rockchip’s Hexacore SoC Can Run Android 6.0 And Debian 9

ARM hacker board vendors and commercial x86-centric board vendors are following Firefly’s lead in experimenting with Rockchip’s ARM-based SoCs. These new single-board computers (SBC) offer x86-type features like HDMI 2.0, mSATA, and mini-PCIe. They also come with powerful and more energy-efficient ARM cores. Now Shenzhen Xunlong has launched its first Rockchip based Orange Pi single-board computer, Orange Pi RK3399, at 109 USD.

Orange Pi RK3999 Powered By Rockchip SoC
Orange Pi RK3999 Powered By Rockchip SoC

The Rockchip RK3399 features two Cortex-A72 cores that are clocked up to 2.0GHz, as well as four Cortex-A53 cores typically clocked at up to 1.42GHz. There’s also a high-performing ARM Mali-T864 GPU. There are 2GB DDR3 RAM, 16GB eMMC flash and can be expanded with an inbuilt MicroSD slot. Mandatory I/O ports as USB 3.0 Type-C port, 4x USB 2.0 host ports. DisplayPort 1.2 with audio for up to 4K at 60Hz. There are Other RK3399 based SBCs as Firefly’s Firefly-RK3399 and similarly open source Rockchip RK3399 Sapphire.

Like most of these boards, the Orange Pi RK3399 is a high-end board with various ports and interfaces. The Orange Pi RK3399 is the only one of these SBCs with mSATA, and you can have dual mSATA drives if you dedicate the mini-PCIe slot to mSATA instead of LTE. Orange Pi RK3399 stands out with its numerous sensor assembly, which includes a G-Sensor, Gyro, Compass, HALL sensor, and ambient light sensor.

Orange Pi RK3999 front details
Orange Pi RK3999 front details

The Orange Pi RK3399 offers almost the same as Firefly-RK3399, with GbE, WiFi-AC, Bluetooth 4.1, and a large-scale collection of multimedia features. There’s a 40- instead of 42-pin expansion interface. Just like Firefly boards, there is no support for Raspberry Pi compatibility. The board also lacks the Firefly’s RTC, and at 129 x 99mm, which is heavier and just slightly larger than the Firefly-RK3399.

One of the best advantages of the Firefly board is software support. Firefly offers Ubuntu 16.04 while the Orange Pi only has Debian 9 along with Android 6.0. More importantly, since this is Shenzhen Xunlong’s first Rockchip board, software support is likely to procrastinate. Hopes are high on this being an open hardware board like the other Orange Pi models.

SudoProc – A solderable 1.8GHz Quad Cortex-A17 module With 4GB RAM and HDMI 2.0

A Slovenia based startup Sudo Systems will soon launch a module called SudoProc. This module is highly compact (65 x 40 x 4.3mm) and solderable. It contains Rockchip’s 1.8GHz, quad-core, Cortex-A17 SoC RK3288 SoC with 600MHz Mali-T764 GPU. The highlighted feature set includes 4GB of dual-channel 1066MHz LPDDR3 RAM. SudoProc also includes an embedded security engine, a Gigabit Ethernet controller, and support for HDMI 2.0 4K with 10-bit H.265 video decoding.

SudoProc module by Sudo Systems
SudoProc module by Sudo Systems

This is only the second, independently available RK3288-based “computer-on-module” available out there. Boardcon’s MINI3288 is also available on its sandwich-style EM3288 SBC. The RK3288 is the backbone of Android mini-PCs and also powers several Linux/Android-based open source Single Board Computers(SBC). The SudoProc supports Android 5.0 to 7.0, as well as Debian, Ubuntu, and an in-house developed SudoOS Linux distribution.

The SudoProc module offers a lot of RAM along with a huge amount of onboard eMMC 4.5 32GB storage. It is expandable up to 512GB. There’s also support for 2x SDIO 3.0. It has HDMI 2.0 for video support and SPDIF and I2S/PCM take care of Audio.

The 218-pin SudoProc is further provided with interfaces including USB 2.0 host and OTG, as well as 5x UART, 5x I2C, 3x SPI, 4x PWM with the interrupt. SudoProc also has up to 100 GPIOs which are programmable as interrupt inputs. Other listed I/Os includes 3-channel, 10-bit SARADC, 8-bit TS stream shared with CIF, a “Host” interface shared with GMAC, and a GPS interface. On-demand optional I/O incorporates HSIC 2.0, PS/2, and Smart Card.

The 5V/3A module supports 1.8V to 3.3V logic level output and allows remote control of the PMIC. Sudo Systems did a good job with its thermal dissipation design. There’s an integrated heatsink to take care of it. With the maximum thermal dissipation of 10W, the module’s estimated workings temperature is 25°C to 85°C.

In February, the SudoProc will open for pre-orders in limited quantities and will be shipped by March. The price is about $300, including a development board of the module. For further information, contact Sudo Systems at info@wearesudo.com.

Update (April 3rd, 2018): In a recent email, Sudo Systems let me know that they’ve decreased the price which is around $270 right now per unit. Universities and students are getting up to 50% discount on that price as well.

MicroZed is a Powerful and Low-Cost ARM + FPGA Linux Development Board

MicroZed is a low-cost development board from Avnet, the makers of the $475 ZedBoard and the entry level MiniZed development boards. Its unique design allows it to be used as both a stand-alone evaluation board for basic SoC experimentation or combined with a carrier card as an embeddable system-on-module (SOM).

The MicroZed processing system is based on the Xilinx Zynq®-7000 All Programmable SoC. The Zynq®-7000 All Programmable SoC (AP SoC) family integrates the software programmability of an ARM®-based processor with the hardware programmability of an FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP, and mixed-signal functionality on a single device. The processing system offers the ability to run standard operating systems like Linux, real-time operating systems, or a combination of the two. The programmable logic provides a unique capability to create custom interfaces or custom accelerators. Together, they provide a versatile, performance optimized solution.

ZedBoard™ is a low-cost development board for the Xilinx Zynq®-7000 All Programmable SoC. This board contains everything necessary to create a Linux, Android, Windows® or other OS/RTOS-based design all at a cost of $495. The MicroZed sells for $199 with close performance and functionality with the ZedBoard. MicroZed contains two I/O headers that provide connection to two I/O banks on the programmable logic (PL) side of the Zynq – 7000 AP SoC device. In stand-alone mode, these 100 PL I/O are inactive. When plugged into a carrier card, the I/O are accessible in a manner defined by the carrier card design. The MicroZed board targets application in the areas of general FPGA evaluation and prototyping, embedded SOM applications, embedded vision, test & measurement, motor control, software-defined radio, industrial network and industrial IoT.

The Zedboard is based on Zynq-7020 with 85K logic cells while the MicroZed is based on the lower Zynq-7010 with a 28K logic cell. The MicroZed has 1GB RAM instead of 512 MB on the ZedBoard and has lesser interfaces as compared to the ZedBoard.

The following below are the features of the MicroZed SoM:

SoC

  • XC7Z010 – 1CLG400C

Memory

  • 1 GB of DDR3 SDRAM
  • 128 Mb of QSPI Flash
  • Micro SD card interface

Communications

  • 10/100/1000 Ethernet
  • USB 2.0
  • USB-UART

User I/0 (via dual board-to-board connectors)

  • 7Z010 Version
    • 100 User I/0 (50 per connector)
    • Configurable as up to 48 LVDS pairs or 100 single-ended I/O

Misc

  • 2×6 Digilent Pmod compatible interface providing 8 PS MIO connections for user I/0
  • Xilinx PC4 JTAG configuration port
  • PS JTAG pins accessible via Pmod
  • 33Mhz oscillator
  • User LED and push switch

The MicroZed Evaluation can be purchased from the Avnet store here and comes with the following: MicroZed board, Micro USB cable, 4GB μSD card, Getting Started Card and a Xilinx Vivado WebPACK support and the Avnet’s MicroZed SOM comes bundled with the Wind River’s Pulsar™ Linux.

Hands-on with the PocketBeagle

Ken Shirriff shares his experience with a low-cost, compact Linux computer PocketBeagle:

The PocketBeagle is a tiny but powerful inexpensive key-fob-sized open source Linux computer. It has 44 digital I/O pins, 8 analog inputs, and supports multiple serial I/O protocols, making it very useful as a controller. In addition, its processor includes two 200-MHz microcontrollers that allow you to implement low-latency, real-time functions while still having the capabilities of a Linux system This article discusses my experience trying out different features of the PocketBeagle, along with some technical details.

Hands-on with the PocketBeagle – [Link]

LattePanda – Hackable Single Board Computer runs Win 10

LattePanda, has announced the launch of its next-gen LattePanda, LattePanda Delta, what the company claims to be the first hackable computer pre-installed Windows 10 and compatible with Linux. It offers onboard Intel 7th Gen Dual-core, Four-Thread processor, and the general performance is four times higher than the first generation. Additional it integrates an Arduino Compatible coprocessor to support the access of thousands of sensors and controllers. The project is live on kickstarter and has 59 days to go.

This is why we redesigned the LattePanda – to make it even easier for these talented and eager individuals to have a tool that can power nearly anything they want to build, whether a video game console, a 4K movie player, an in-home fire sensor, or even a digital instrument.

Key specifications:

  • Windows 10 Pro preinstalled, support Linux
  • CPU Up to Intel Core 7th generation M3-7Y30, 2.6Ghz
  • Up to 8GB dual-channel RAM
  • Compatibility with NVMe SSDs
  • Gigabit Ethernet, Wake on lan enable
  • Intel Dual Band Wireless-AC 3165, support 2.4G/5G WiFi, support Bluetooth V4.2
  • Software that includes AI and IoT developer kits, allowing students to explore these advanced technologies in an easy, user-friendly way
  • Hardware to support creations that leverage Artificial Intelligence (AI), Augmented Reality (AR), Virtual Reality (VR) and Machine Learning (ML)
  • Arduino-enabled, support all of arduino IDE and software library, compatible with Arduino sensor and Actuator.

RandA, Combining Raspberry Pi & Arduino

Two years ago, open electronics had produced “RandA“, an Atmega328-based board for Raspberry Pi to deliver the advantages of both, Raspberry Pi and Arduino. Earlier this month, an updated version of RandA has been released to be compatible with Raspberry Pi 3.

RandA is a development board that leverages the hardware equipment and the computing power of Arduino with its shields, and the enormous potential of the Raspberry Pi. It features Atmega328 microcontroller, has RTC (Real Time Clock) module, power button and sleep timer, connectors for 5 volts and connectors for mounting Arduino shield.

Combining these two platforms is a way to exploit specific characteristics of both. Raspberry Pi could use Arduino as configurable device, and Arduino might work as a controller for Raspberry Pi allowing access to complex environments like the network, allowing complex processing or access to multimedia.

RandA was created at first for Raspberry Pi 2 and B+, using the first 20 pins to connect them, the serial port for programming the Atmega328 and for communication with Raspberry Pi. With the enhancements that come with the third version of Raspberry Pi, such as upgrading CPU to a quad-core 64 bit ARMv8 clocked at 1.2 GHz and adding WiFi and Bluetooth transceivers, there were some structure modifications that require updating the RandA.

Raspberry Pi 3 uses the standard UART0 serial port for connection via the Bluetooth interface equipping version 3. Therefore, it is no longer available on GPIO14/15 as it was in the first and second version of Raspberry Pi. The secondary UART1 serial is configured on those pins instead, but this serial port is based on a simulated serial not on a preset UART hardware. In particular, its clock is connected to the frequency of the clock of the system which varies in function of the load in order to save energy.

To solve this, the software is configured to recover the UART0 on GPIO 14/15 pins without modifying any hardware parts. This way will disable the Bluetooth peripheral, but the WiFi is still working and you can use Bluetooth by connecting a Bluetooth dongle via USB.

To know more about the new version of RandA you can review this post, and reading this post to learn more about RandA in general. You can get your RandA board for about $36 and this tutorial will help you get starting with it.

PandwaRF, A Portable Radio Analysis Tool

PandwaRF, is a portable low-power RF device that captures, analyses and re-transmits RF signals via an Android device or a Linux PC. It uses Bluetooth (BLE) or USB connection to transmit data in a simple and fast way, comes in the form of a controllable housing from a smartphone or a computer.

This pocket-size device operates at sub-1 GHz range, and it replaced the ‘standard SDR Grind’ of capturing, demodulating, analyzing, modifying and replaying by hand with a simple powerful interface.

The PandwaRF consists of a capable hardware device, tailored for beginners and advanced users, with an application that runs either on an Android device or on a PC. The Android interface provides full functionality to control and customize the PandwaRF easily using JavaScript.

Technical details of the PandwaRF:

  • Bluetooth Smart Module ISP130301, based on nRF51
  • CC1111 Low-Power SoC with Sub-1 GHz RF Transceiver
  • Multi frequencies (from 300 MHz to 928 MHz)
  • Multi modulation (ASK/OOK/MSK/2-FSK/GFSK)
  • Transmit and receive in half duplex mode
  • Support data rates up to 500 kBaud
  • Open hardware
  • Full speed USB: 12 Mbps (Linux or Android)
  • Bluetooth Smart 4.0 (Android/iOS)
  • USB charging & battery powered
  • 4 buttons to assign codes
  • 4 Status LEDs
  • 16 Mbit Flash Memory to save custom RF protocols
  • Rechargeable battery powered for stand-alone operation
  • Battery fuel gauge
  • RX amplifier for improved sensitivity: +13dB from 300MHz-1GHz
  • TX amplifier for higher output power: +20dB @ 433MHz & +17dB @ 900MHz
  • SMA connector for external antenna
  • Antenna port power control for external LNA
  • 22-pin expansion and programming header
  • Included: Battery and injection molded plastic enclosure

PandwaRF features are not fully complete yet, the developers had finished captured data processing offload, radio scripting (JavaScript & Python), RF packet sniffer, and spectrum analyzer. Other features are still in development process.

The device is available in three options, the Bare version is about $120 and comes without housing and without battery, the standard version is about $142 with battery and black case, in addition the extended version with enhanced features.

You can reach more information and order your PandwaRF on the official website.