Tag Archives: microcontoller

WISP – Re-programmable Microcontroller That Runs On Energy Harvested From Radio Waves

A new research initiative between the University of Washington’s Sensor Lab and the Technical University of Delft in the Netherlands has created a microprocessor that can power itself through stray radio waves and receive programmable updates in the same fashion. While the RISC-derived 16-bit microcontroller CPU is very weak compared to modern standards, it’s much more powerful than any other device that’s powered by ambient energy in the environment with no battery required.

The WISP 5 - Microchips and sensors run from radio wave's energy
The WISP 5 – Microchips and sensors run from radio wave’s energy

This battery-free system is equipped with a sensor and a microchip, which can be powered entirely by radio waves harvested from the air and is up to 10 times faster than similar ambient-powered devices. Best of all, in contrast to similar devices, it can also download executables, allowing it be reprogrammed or upgraded to newer version of firmware whenever needed. This has significant implications for the Internet of Things development and for ambient computing as a whole.

The variety of handheld, portable technology, and wearable gadgets available today is truly amazing. In order to make devices even more compact and thinner, manufacturers typically try to shrink their designs as much as possible. Unfortunately, device size is ultimately limited by the batteries, all of which have a certain capacity before they dry out and must be recharged again. It is a challenge for engineers and designers to balance battery life with function and aesthetics.

The project of radio wave-driven microcontroller is dubbed WISP, or Wireless Identification and Sensing Platform. RFID (CRFID) technology is an example of  WISP. In particular, WISP is capable of being powered passively by converting radio frequencies emitted by conventional RFID (radio frequency identification) readers into electrical power. The project’s latest accomplishment is the addition of Wisent (short for “wirelessly sent”), a faster and more reliable downstream communication-oriented protocol for CRFIDs that can tolerate fluctuations in operating power.

The WISP is constructed out of an open source, open architecture EPC Class 1 Generation 2 RFID tag that incorporates a fully programmable 16-bit microcontroller, in addition to any add-on sensors. It differs from ordinary RFID tags as it is programmable, and can be multi-functional. The team writes in their research paper,

The novelty of Wisent is its ability to change adaptively the frame length sent by the reader, based on the length throttling mechanism, to minimize the transfer times at varying channel conditions. Wisent enables wireless CRFID reprogramming, demonstrating the world’s first wirelessly reprogrammable CRFID.

PIC16F15386, A New PIC Family Announced By Microchip

Microchip, the well-known manufacturer of microcontrollers and semiconductors, announced this week a new family of 8-bit PIC microcontrollers, the ‘PIC16F15386’.

The new PIC16F15386 family features a 8 MIPS CPU speed, with 2KB RAM and up to 28KB flash memory offered in 8 to 48-pin packages. It also has a dual UART, dual SPI and dual I²C interfaces, one 8-bit timer and two 16-bit timers.

PIC16F15386 Features

  • Enhanced Mid-range Core with 49 Instruction, 16 Stack Levels
  • Flash Program Memory with self read/write capability
  • eXtreme Low Power (XLP)
  • IDLE and DOZE low power modes
  • Peripheral Module Disable (PMD)
  • Peripheral Pin Select (PPS)
  • 4x 10-bit PWMs
  • 2x Capture, Compare, PWM (CCP)
  • Complementary Waveform Generator (CWG)
  • Numerically Controlled Oscillator (NCO)
  • 4x Configurable Logic Controller (CLC)
  • 43 Channels 10-bit ADC with Voltage Reference
  • 5-bit Digital to Analog Converter (DAC)
  • 2x Comparators
  • 1x 8-bit Timers (TMR0/TMR2)
  • 2x 16-bit Timer (TMR1)
  • Window Watchdog Timer (WWDT)
  • Enhanced Power-On/Off-Reset
  • Low-Power Brown-Out Reset (LPBOR)
  • Programmable Brown-Out Reset (BOR)
  • In Circuit Serial Programming (ICSP)
  • PIC16LF15386 (1.8V – 3.6V)
  • PIC16F15386 (2.3V – 5.5V)

PIC16F15386 family comes with essential peripherals like Intelligent Analog, Core Independent Peripherals (CIPs) and communication combined with eXtreme Low-Power (XLP) for a wide range of low-power applications. The family features PWMs, multiple communication, temperature sensor and memory features like Memory Access Partition (MAP) and Device Information Area (DIA).

We’ve always offered a diverse portfolio of products with large market appeal,” said Steve Drehobl, vice president of Microchip’s 8-bit MCU division. “With the combination of the most requested features and peripherals by our large base of PIC MCU users, the flexibility in memory size and package options and the availability of MPLAB Xpress with MCC, we expect the PIC16F15386 family to be popular with experienced and first-time PIC MCU designers.

The PIC16F15386 is also compatible with the MPLAB Xpress IDE and the MPLAB Code Configurator, a graphical programming environment. The family includes 13 unique products that are offered in various package options including PDIP, SOIC, DFN, UDFN, UQFN and SSOP.

All products are available now for sampling and in volume production. Volume pricing starts at $0.33 for the product family.

ATtiny Dev Board / Tinyduino

This is an ATtiny Dev Board. Designed for the ATtiny line of microcontollers from atmel. Its made to be small, simple to build and easy to use.

ATtiny Dev Board / Tinyduino – [Link]