Tag Archives: module

Linux-driven COM And Carrier Board Powered by Zynq SoC

MYIR Tech has launched an $85 module, Xilinx Zynq-7010 or -7007S that runs on MYC-C7Z010/007S CPU Module. MYC-C7Z010/007S CPU Module is a part of their newly launched sandwich-style, $209 MYD-Y7Z010/007S Development Board. There’s an open source Linux 3.15.0 based BSP for the module, and the MYD-Y7Z010/007S carrier board ships with schematics. Both the module and development board can withstand -40 to 85°C temperature range.

MYC-C7Z010/007S CPU Module

MYC-C7Z010/007S CPU Module
MYC-C7Z010/007S CPU Module

Xilinx’s Zynq-7010 has dual-core Arm Cortex-A9 block as the Zynq-7015 or Zynq-7020, which is available along with the Z010 on the earlier MYC-C7Z010/20 module. However, the Zynq-7010 SoC has more FPGA logic cells (28K). On the other hand, the Zynq-7007S is limited to a single Cortex-A9 core and a 23K logic cell FPGA. The Zynq-7010 ranges from 667MHz to 866MHz while the 7007S can operate from 667MHz to 766MHz.

The MYC-C7Z010/007S has 75 x 50mm dimension. It ships with 512MB DDR3 SDRAM4GB eMMC, and 16MB quad SPI flash. There’s a Gigabit Ethernet PHY and external watchdog. A 1.27mm 180-pin stamp-hole (Castellated-Hole) expansion interface is also there for ARM and FPGA interfaces that are useful to improve shock resistance. Supported I/O incorporates single USB and SDIO interfaces plus a pair of serial, I2C, CAN, SPI, and 16-channel ADC.

MYD-Y7Z010/007S dev board

MYD-Y7Z010/007S Dev Board
MYD-Y7Z010/007S Dev Board

The 153 x 80mm MYD-Y7Z010/007S Development Board expands the MYC-C7Z010/007S CPU module with 3x GbE ports, a USB 2.0 OTG port and a DB9 combo port with isolated RS232, RS485, and CAN signals. There’s also a microSD slot for memory expansion and a debug serial port.

An optional, $29 MYD-Y7Z010/007S I/O Cape plugs into the GPIO interface offering an HDMI port, a user button, and LCD, camera, and dual Pmod connectors. The LCD interface supports optional MYIR 7- or 4-inch capacitive and resistive LCD modules. The HDMI port only supports 720p resolution for now. The MYD-Y7Z010/007S board is further equipped with a reset key and boot switch. There’s also a 12V/2A DC input.

The MYC-C7Z010/007S module with the Zynq-7010 is available now for $85. The MYD-Y7Z010/007S Development Board is available with the Zynq-7010 based module for $209. More information is available at MYIR’s MYC-C7Z010/007S and MYD-Y7Z010/007S product pages.

Phytec Develops Three PhyCore Modules – i.MX8, i.MX8M, and iMX8X, Driven By Linux

Phytec has updated their product pages for three new PhyCore modules, all of which support Linux. The three modules, which employ three different flavors of i.MX8 SOC is phyCORE-i.MX 8Xi.MX 8M, and i.MX 8 SBCs. The PhyCore COMs are based on NXP’s Cortex-A53 based i.MX8M, its -A53 and -A72 equipped i.MX8 Quad, and its -A35 based i.MX8X.

phyCore-i.MX 8X

phyCORE-i.MX 8X module
phyCORE-i.MX 8X module

The i.MX8X SoC found on the phyCORE-i.MX 8X module. This board focuses on industrial IoT applications. i.MX8X includes up to 4x cores that comply with Arm’s Cortex-A35.

The i.MX8X SoC is further equipped with a single Cortex-M4 microcontroller, a Tensilica HiFi 4 DSP, and a multi-format VPU that supports up to 4K playback and HD encoding.

There’s no onboard wireless support, but support for dual GbE controllers (1x onboard, 1x RGMII) are available. There are MIPI-CSI and parallel camera interfaces, as well as ESAI based audio.

phyCore-i.MX 8M

phyCORE-i.MX 8M module
phyCORE-i.MX 8M module

The phyCORE-i.MX 8M supports the NXP i.MX8M Quad and QuadLite, both with 4x Cortex-A53 cores, as well as the dual-core Dual. All are clocked to 1.5GHz. They all have 266MHz Cortex-M4F cores and Vivante GC7000Lite GPUs, but only the Quad and Dual models support 4Kp60, H.265, and VP9 video capabilities.

In addition to the i.MX8M SoC, which offers “128 KB + 32 KB” RAM, the module ships with the same memory features as the phyCore-i.MX 8X except that it lacks the SPI flash. Once again, you get 512MB to 4GB of LPDDR4 RAM and either 128MB to 1GB NAND flash or 4GB to 128GB eMMC. This 3.3V module supports an RTC, watchdog, and tamper protection.

phyCore-i.MX 8

phyCORE-i.MX 8 module
phyCORE-i.MX 8 module

The phyCORE-i.MX 8, is ideal for image and speech recognition. It is the third module to support NXP’s top-of-the-line, 64-bit i.MX8 series. The module supports all three flavors of i.MX8 while the other two COMs we’ve seen have been limited to the high-end QuadMax: Toradex’s Apalis iMX8 and iWave’s iW-RainboW-G27M.

i.MX8 QuadMax features dual high-end Cortex-A72 cores clocked at 1.6GHz plus four Cortex-A53 cores. The i.MX8 QuadPlus design is the same, but with only one Cortex-A72 core, and the quad has no -A72 cores.

The 73 x 45mm phyCORE-i.MX 8 supports up to 8GB LPDDR4 RAM. Like the phyCORE-i.MX 8X, the module provides 64MB to 256MB of Micron Octal SPI/DualSPI flash. There’s no NAND option, but you get 4GB to 128GB eMMC.

More information may be found in Phytec’s phyCORE-i.MX 8XphyCORE-i.MX 8M, and phyCORE-i.MX 8 product pages as well as the phyBoard-Polaris SBC product page.

Advantech SOM-5871 Module Introduces The New AMD Ryzen Embedded V1000 SoC

Taiwan based Advantech Co. has posted an introductory product page for a SOM-5871 module that appears to introduce the long-awaited next generation of AMD’s embedded R-Series SoC line. The R-Series is based on the same 14nm Zen Core already used in higher-end Ryzen SoCs. The new SoC is introduced as the “AMD Zen CPU Core” on the product pages and is called the AMD V1000 SoC on this Advantech COM Express teaser page.

Advantech SOM-5871 preliminary photo and specs
Advantech SOM-5871 preliminary photo and specs

According to the Advantech SOM-5871 product page, the AMD V1000 supports a core/thread of “2/4/8”. This obscure listing could mean it supports both dual-core, quad-threaded and quad-core, octa-threaded models, which are the configurations listed for the iBase Mini-ITX SBC. The iBase board also had the same memory support as Advantech’s SOM-5871. They both have up to 32GB of dual-channel DDR4-2400/3200 with optional ECC support.

Advantech also lists the SoC can have 1MB or 2MB cache, a 12-54W TDP, an integrated I/O chipset, and an SPI-based AMI 64MB BIOS. No clock speed information is available yet of this SoC. On the other hand, the Vega GPU embedded in this SoC has 11 compute units clocked at 1.5GHz and supports H.265 decode and encode and VP9 decode. The Vega also supports DirectX 12, EGL 1.4, OpenCL 2.1, OpenGL ES 1.1, 2x, and 3x, as well as OpenGL Next/OpenGL 4.6. The SOM-5871 module supports 4K video as well as four independent symmetrical displays.

SOM-5871 front view
SOM-5871 front view

No OS support information was mentioned for Advantech’s board. Most probably Linux and Windows support are available for SOM-5871, but the module is said to support the company’s iManager, WISE-PaaS/RMM, and Embedded Software APIs. In addition to the specs remarked above, the 125 x 95mm SOM-5871 Type 6 Basic module comes with dual GbE controllers (Intel I210 AT and I210 IT) and dual 6Gbps SATA III interfaces.

No pricing or availability information was provided for Advantech’s introductory SOM-5871 module or the iBase Mini-ITX and embedded signage PC products. More information may be found at Advantech’s SOM-5871 product page.

Panasonic PAN9420 is a standalone fully embedded Wi-Fi Module

Building an Internet of Things infrastructure most times depends upon the wireless connectivity, but there are many options for wireless and not every device is IP addressable – a requisite feature for IoT. There are many wireless interface options, Wi-Fi, Bluetooth Low Energy (BLE), ZigBee, Z-Wave, Lora, RFID and Satellite, each with their own unique balance of power, range, data rates, mesh networking, interference immunity, and ease of use. However, some interfaces are not yet native-IP enabled, so cannot be addressed directly or exchange data with other devices and servers over the Internet. These then require a separate gateway, adding expense and complexity to the final solution.

PAN9420 Wi-Fi module

This is where Wi-Fi stands out: it is based on the IEEE 802.11 standards with native IP addressability, is ubiquitous, well understood, and can scale well in terms of data rates to optimize for power consumption. The PAN9420 is a 2.4 GHz ISM band Wi-Fi-embedded module from Panasonic.

The PAN9420 is a fully embedded stand-alone 2.4 GHz 802.11 b/g/n Wi-Fi module and the successor of the PAN9320.  It includes a wireless radio and an MCU for easy integration of Wi-Fi connectivity into various electronic devices. The module is specifically designed for highly integrated and cost-effective applications and includes a fully shielded case, integrated crystal oscillators, and a chip antenna.

The PAN9420 is a 29.0×13.5×2.66mm SMT package with a fully shielded case and a high-performance Marvell® 88MW300 MCU/WLAN System-on-Chip (SoC) inside, an integrated crystal oscillator at 38.4MHz, a clock crystal at 32.768KHz, medium access controller, encryption unit, boot ROM with patching capability, internal SRAM, and a chip antenna with option for a selectable external antenna. It also comes with an integrated web server, over-the-air firmware update, two UART interfaces, and a full security suite.

Block Diagram for the PAN9420 module

Simultaneous Wi-Fi connections can easily be implemented from the module with other smart devices as a result of its support for parallel access point and infrastructure mode. Client (STA), a micro access point (μAP), and Ad-hoc mode (Wi-Fi Direct) applications are enabled by the pre-programmed Wi-Fi SoC firmware. Raw data can be sent over the air from UART to smart devices, web servers, or PC applications with the transparent mode.

Unlike the PAN9320, the PAN9420 has an enhanced temperature range of -40 °C to +85 °C and reduced power consumption in transmitting, idle and power down. The PAN9320 and PAN9420 both have the same PCB configuration making it easy to migrate from PAN9320 without any changes to the PCB design. With a power supply of 3.0 to 3.6V and a power down mode current consumption less than 1mA, the PAN9420 is suitable for low power applications and should run comfortably with coin cell batteries.

It’s available in an Evaluation Kit containing one PAN9420 Mother Board (MB), one PAN9420-ETU daughter board which includes the PAN9420 FCC approved version, and one USB-cable packaged in a large case. The PAN9420 FCC version module already comes preinstalled with a firmware for easy deploying IoT based applications. The Evaluation Kit is going for around $128 and the PAN9420 module is costing at about $20.76 on digikey.

SudoProc – A solderable 1.8GHz Quad Cortex-A17 module With 4GB RAM and HDMI 2.0

A Slovenia based startup Sudo Systems will soon launch a module called SudoProc. This module is highly compact (65 x 40 x 4.3mm) and solderable. It contains Rockchip’s 1.8GHz, quad-core, Cortex-A17 SoC RK3288 SoC with 600MHz Mali-T764 GPU. The highlighted feature set includes 4GB of dual-channel 1066MHz LPDDR3 RAM. SudoProc also includes an embedded security engine, a Gigabit Ethernet controller, and support for HDMI 2.0 4K with 10-bit H.265 video decoding.

SudoProc module by Sudo Systems
SudoProc module by Sudo Systems

This is only the second, independently available RK3288-based “computer-on-module” available out there. Boardcon’s MINI3288 is also available on its sandwich-style EM3288 SBC. The RK3288 is the backbone of Android mini-PCs and also powers several Linux/Android-based open source Single Board Computers(SBC). The SudoProc supports Android 5.0 to 7.0, as well as Debian, Ubuntu, and an in-house developed SudoOS Linux distribution.

The SudoProc module offers a lot of RAM along with a huge amount of onboard eMMC 4.5 32GB storage. It is expandable up to 512GB. There’s also support for 2x SDIO 3.0. It has HDMI 2.0 for video support and SPDIF and I2S/PCM take care of Audio.

The 218-pin SudoProc is further provided with interfaces including USB 2.0 host and OTG, as well as 5x UART, 5x I2C, 3x SPI, 4x PWM with the interrupt. SudoProc also has up to 100 GPIOs which are programmable as interrupt inputs. Other listed I/Os includes 3-channel, 10-bit SARADC, 8-bit TS stream shared with CIF, a “Host” interface shared with GMAC, and a GPS interface. On-demand optional I/O incorporates HSIC 2.0, PS/2, and Smart Card.

The 5V/3A module supports 1.8V to 3.3V logic level output and allows remote control of the PMIC. Sudo Systems did a good job with its thermal dissipation design. There’s an integrated heatsink to take care of it. With the maximum thermal dissipation of 10W, the module’s estimated workings temperature is 25°C to 85°C.

In February, the SudoProc will open for pre-orders in limited quantities and will be shipped by March. The price is about $300, including a development board of the module. For further information, contact Sudo Systems at info@wearesudo.com.

Update (April 3rd, 2018): In a recent email, Sudo Systems let me know that they’ve decreased the price which is around $270 right now per unit. Universities and students are getting up to 50% discount on that price as well.

Pi/104 – Pi Compute carrier board

Pi/104 is a Pi Compute carrier board in PC/104 format with industrial durability.

The Pi Compute Module is a powerful tool for custom electronics projects. But if your project requires industrial grade specifications, you’re currently out-of-luck. This is where Pi/104 comes in – with a wide temperature rating and a power supply that encompasses common industrial cabinet voltages. Pi/104 doesn’t try to do too much out of the box. Instead, it relies on an industry standard form factor for accessories, which allows people to build custom stacks to meet their goals in a cost effective way. It also means the base board is cheaper, bringing an industry-ready board to the hobby market.

Features

  • Based on the PC/104 format, compact, sturdy, and stackable.
  • Uses the “OneBank” connector leaving more PCB area and cheaper than a full PCIe/104 connector.
  • “OneBank” has 5/3.3 V and two USB channels allowing you to use USB-powered peripherals in the stack such as cellular modems, Wi-Fi cards, USB to SATA, FPGA, and serial connectors. (Note: PCIe pins in OneBank connector are not used.)
  • Flexible power. Board can be powered through the wire terminals (8 to 35 volts), OneBank connector (5 V and 3.3 V), or through the USB OTG connector.
  • USB OTG connector supports full range of functionality including OTG and USB boot.
  • Display flexibility with either HDMI or DSI support as well as a camera through the CSI port
  • IDE-style connectors for GPIO, making I/O ribbon cables easy to find. Connector closest to module is pin compatible with Raspberry Pi and has been successfully tested with several HATs. The other connector carries the rest of the compute module pins and some extra grounds.
  • Recessed Ethernet connector allows for a full size, standard ethernet cable to be used even in stack configuration.
  • On-board microSD card slot allows for use of Pi Compute 3 Lite modules.

Specifications

  • 2 x USB A
  • 1 x microUSB OTG
  • 1 x HDMI
  • 1 x 10/100 Ethernet
  • 1 x microSD slot (CM3L only)
  • 1 x CSI
  • 1 x DSI
  • 59 x GPIO in two IDE-style connectors
  • OneBank stacakble connector with 2 USB and 5/3.3 V
  • Wide power supply, 8-36 V
  • Temperature spec with Pi Compute Module, -25° C to 85° C
  • Temperature spec without Pi Compute Module, -40° C to 85° C

LC-04 4 Channel Logic Converter 3.3V – 5.0V

If you have ever tried to connect a 3.3V device to a 5V system, you know what a challenge it can be. The LC-04 bi-directional logic level converter is a small device that safely steps down 5V signal to 3.3V and steps up 3.3V to 5V at the same time. In this instructable, mybotic explained the procedure to use the LC-04 bi-directional logic converter.

Description:

The LC-04 module offers bi-directional shifting of logic level for up to four channels. The logic level HIGH (logic 1) on each side of the board is achieved by 10K Ω pull-up resistors connected to the respective power supply. This provides a quick enough rise time of logic level to convert high frequency (400KHz I²C, SPI, UART etc.) signals without delay.

This module has the following features:

  • Dual-supply bus translation :
    • Lower-voltage (LV) supply can be 1.5 V to 7 V
    • Higher-voltage (HV) supply can be LV to 18 V
  • Four bi-directional channels
  • Small size: 0.4″ × 0.5″ × 0.08″ (13 mm × 10 mm × 2 mm)
  • Breadboard-compatible pin spacing

    The bi-directional level-shifting circuit
    The bi-directional level shifting circuit

The Pinout:

The LC-04 logic level converter has two types of pins:

  1. Voltage input pins :
    • 2 pins (GND and LV) on Low Voltage  side
    • 2 pins (GND and HV) on High Voltage  side
  2. Data channels :
    • 4 pins (LV1, LV2, LV3, and LV4) on Low Voltage  side
    • 4 pins (HV1, HV2, HV3, and HV4) on High Voltage  side

Pin HV and LV set HIGH (logic 1) logic level on High voltage side and Low voltage side respectively, with respect to the GND.

Data channel pins shift logic levels from one voltage reference to another. A low voltage signal sent into LV1, for example, will be shifted up to the higher voltage and sent out through HV1. Similarly, a high voltage signal sent into HV1 will be shifted down to the lower voltage and sent out through LV1.

LC-04 Bi-directional logic level converter pinout
LC-04 Bi-directional logic level converter pinout

Parts List:

  1.  LC-04 4 Channel Logic Level Converter
  2. Arduino Uno Board and USB Cable
  3. Breadboard
  4. Crocodile Clip (optional)
  5. Multimeter

The Wiring:

The wiring is pretty simple. You may even omit the breadboard by making end-to-end connections. Two types of connections are required:

  1. Pin connection to shift down (5V to 3.3V)
  2. Pin connection to shift up (3.3V to 5V)
Pin Connection to Shift Down:
  1. LV to 3.3V
  2. LV’s GND to multimeter’s black probe
  3. LV3 to multimeter’s red probe
  4. HV to 5V
  5. GND to UNO’s GND
  6. HV3 to Digital Pin 4
Logic level shift down using LC-04 logic level converter
Logic level shifting down using LC-04 logic level converter
Pin Connection to Shift Up:
  1. LV to 3.3V
  2. LV’s GND to UNO’s GND
  3. LV3 to Digital Pin 4
  4. HV to 5V
  5. GND to multimeter’s black probe
  6. HV3 to multimeter’s red probe
Logic level shifting up using LC-04 logic level converter
Logic level shifting up using LC-04 logic level converter

Using OV7670 Camera Sensor With Arduino

Developing a hardware project became much easier thanks to the growing number of the various sensors and actuators modules, which give you the ability to shift your ideas into a wider range of applications. This tutorial presents the steps of how to use OV7670 Camera Sensor Module STM32 with Arduino.

To follow the tutorial, you will need these parts:

  1. Arduino Uno Board and USB
  2. OV7670 Arduino Camera Sensor Module STM32
  3. Resistor (2x10K & 2×4.7K)
  4. Breadboard

The OV7670 image sensor is a small size, low voltage, single-chip VGA camera and CMOS image processor for all functions. It provides full-frame, sub-sampled or windowed 8-bit images in various formats, controlled through the Serial Camera Control Bus (SCCB) interface.

fka3gubiuiyu30t-medium

The camera module is powered from a single +3.3V power supply, and external clock source for camera module XCLK pin. The OV7670 camera module built-in onboard LDO regulator only requires single 3.3V power and can be used in Arduino, STM32, Chipkit, ARM, DSP, FPGA and etc.

This is pin definition table of the module:

OV7670 Pin Definition
OV7670 Pin Definition

OV7670 module specification:

  • Optical size 1/6 inch
  • Resolution 640×480 VGA
  • Onboard regulator, only single 3.3V supply needed
  • Mounted with high quality F1.8 / 6mm lens
  • High sensitivity for low-light operation
  • VarioPixel® method for sub-sampling
  • Automatic image control functions including: Automatic
  • Exposure Control (AEC), Automatic Gain Control (AGC), Automatic White Balance (AWB), Automatic
  • Band Filter (ABF), and Automatic Black-Level Calibration (ABLC)
  • Image quality controls including color saturation, hue, gamma, sharpness (edge enhancement), and anti-blooming
  • ISP includes noise reduction and defect correction
  • Supports LED and flash strobe mode
  • Supports scaling
  • Lens shading correction
  • Flicker (50/60 Hz) auto detection
  • Saturation level auto adjust (UV adjust)
  • Edge enhancement level auto adjust
  • De-noise level auto adjust

The connection between the module and the Arduino uses 6 analog pins and 8 digital pins, and they have to be connected as shown in this figure:

fe4v64ciukf37jh-medium

The software requirements are the Arduino IDE and Java Development Kit (JDK). To run the project, you have to execute a java code through the command line. The script will search for images received from Arduino and then saves them on the PC.

Source code, additional needed files, and setting up instructions are all available at the tutorial page.

A $20 Heart Rate Module For Health-Tech Projects

Heart rate monitoring is a common procedure for most of health related projects. Therefore, producing sensors modules and circuit boards for such tasks will facilitate and push forward the development of new health-tech projects.

Maxim Integrated, an analog and mixed-signal integrated circuits manufacturer, has developed a new module for measuring heart rate and pulse oximetry. It’s called “MAXREFDES117#”, derived from Maxim Reference Design, and it is a small board which is compatible with Arduino and Mbed boards, enabling a wide range of possibilities for developers.

MAXREFDES117# Board
MAXREFDES117# Board

MAXREFDES117# can be powered by 2 to 5.5 volts. It is a photoplethysmography (PPG)-based system that uses optical method for detecting heart rate and SpO2. It consists of three main parts:

1. MAX30102, a high sensitivity heart rate and pulse oximetry sensor. It is used with integrated red and IR LEDs for heart rate and pulse oximetry monitoring.

2. MAX1921, a low-power step-down digital-to-digital converter. It generates 1.8 V from input to supply the sensor.

3. MAX14595, a high speed logic-level translator. It works as an interface between the sensor and the connected developing board.

MAXREFDES117 Block Diagram
MAXREFDES117 Block Diagram

The board size is only 0.5” x 0.5” (12.7mm x 12.7mm) and has low power consumption that make it suitable for wearable applications. Thus, it can be placed on a finger, an earlobe, or other fleshy extremity.

MAXREFDES117# uses open-source heart-rate and SpO2 algorithm in its firmware. It also can be used with any controller having I2C interface. But the available firmware had been tested only on 6 different development boards, three of them are Arduinos (Adafruit Flora, Lilypad USB, and Arduino UNO), and the others are mbed boards (Maxim Integrated MAX32600MBED#, Freescale FRDM-K64F, and Freescale FRDM-KL25Z).

The MAXREFDES117# Firmware Flowchart
The MAXREFDES117# Firmware Flowchart

Accuracy of data collected by MAXREFDES117# depends on the used platform. According to the results with tested boards, Arduino boards give less accuracy than mbed ones because of theirs smaller SRAM size.

MAXREFDES117# is available for $20, it can be ordered online through the website.
More detailed information and quick start guide are presented here. In addition, all of the source files including schematic, PCB, BOM, and firmware are open and can be reached at the official product page.

Reverse engineering a server CPU voltage regulator module

pcb-top

Andy Brown wrote a detailed article on reverse engineering a CPU voltage regulator:

A recent ebay fishing expedition yielded an interesting little part for the very reasonable sum of about five pounds. It’s a voltage regulator module from a Dell PowerEdge 6650 Xeon server.
I originally bought this because I had the idea of salvaging parts from it to use in another project. These are high quality modules that will have very good inductors and sometimes an array of high value ceramic capacitors that could be re-used (ceramics of at least 22µF at 16V and above are rather pricey at the moment). So the VRM arrived and I was rather impressed with the build quality and decided to have a go at reverse engineering it.

Reverse engineering a server CPU voltage regulator module – [Link]