Tag Archives: Motor

AC Motor Speed Controller for Modern Appliances Using LS7311

The project specifically designed for motor speed control application in appliances such as blenders, etc. Tact switches provided for selecting/indicating from 1 to 10 power levels ( Speed Levels).  The project is ideal for universal and shaded-pole motor speed control for modern appliances design. Eliminates awkward mechanical switch assemblies and multi-taped motor winding.

Features

  • 10 Tact Switch for Speed Selection
  • 10 LEDS for speed indication
  • On Board Stop and Start Switches ( Start Switch Latch Operation)
  • Momentary Run Switch
  • Supply 230V ( 110V Possible Refer Data sheet for components Change)
  • 300W Load
  • On Board snubber for Inductive Load
  • No Separate DC power supply required

AC Motor Speed Controller for Modern Appliances Using LS7311 – [Link]

Control a stepper motor using Raspberry Pi

Here is a nice tutorial @ raspberrypi.org on how to control a DC motor using Python.

In this guide, you’ll be controlling two motors from your Raspberry Pi using Python on the desktop. First, it’s best just to learn how to control the motor. Then, once you have it working, you could easily use your code to drive a Raspberry Pi-powered robot by detaching the monitor, mouse, and keyboard and building a robot around a chassis.

Control a stepper motor using Raspberry Pi – [Link]

Control Nema Stepper Motor With Arduino

@ instructables.com have an article describing stepper motors and how to drive them using Arduino. They write:

Lots of People want to build Them own small Cnc machine . they started with drives stepper motor but they stacked in controller Programming . In this instructable Robokits will provide a resource to control your Stepper motor with Arduino. Before Programming we have to learn some basics Related to Stepper motor .

Control Nema Stepper Motor With Arduino – [Link]

Wembi – Closed Loop Motorupgrade for 3D Printer

TeamVenture-Bit tipped us with their kickstarter campaign. It’s about a closed loop motor upgrade kit that will enable your 3D printer to print faster, silently and more consistently. Check it out.

Boasting an advanced PID compensation system that detects issues while your 3D printer or other CNC based machine is moving,

Wembi readjusts itself to eliminate printing problems and help you get the perfect prints fast!

Wembi – Closed Loop Motorupgrade for 3D Printer – [Link]

2X L298 Dual DC Motor Driver Board for Robots

2x L298 H-Bridge Dual Motor driver project can control two DC motors connected to it.  The circuit is designed around popular dual H-Bridge L298 from ST. Motor supply 7V To 46V DC, Load 2Amp Each Channel.

Features

  • Motor supply V2: 7 to 46 VDC
  • Logic Supply V1 : 5V DC
  • Input Signal: Enable, Dir. , PWM
  • Board Provides Current Feed Back ( On Board Shunt Resistor)
  • Control Logic Input: Standard TTL logic level
  • Output DC drive to motor: up to 2A + 2A
  • External Diode Bridge for protection
  • On Board 5V Power LED
  • On Board Motor Supply LED
  • 10X Box Header Connector for Inputs and PWM
  • Header Connector For Logic Supply
  • Screw Terminal for Motor Connections
  • Screw Terminal For Motor Supply

2X L298 Dual DC Motor Driver Board for Robots – [Link]

DC Motor & Direction Controller with Brake using MC33035

dc-motor-speed-direction-controller-m137

This is a 3AMP DC Motor speed and direction controller using MC33035 IC from on semiconductor, though the MC33035 was designed to control brushless DC motor , it may also be used to control DC brush type motors. MC33035 driving a Mosfets based H-Bridge affording minimal parts count to operate a brush type motor. On board potentiometer provided for speed control, slide switch for direction control and brake, On board jumper available to enable the chip. The controller function in normal manner with a PWM frequency of approximately 25Khz. Motor speed is controlled by adjusting the voltage presented to the non inverting input of the error amplifier establishing the PWM’s slice or reference level. Cycle by cycle current limiting of the motor is accomplished by sensing the voltage across the shunt resistor to the ground of H-bridge. The overcurrent sense circuit makes it possible to reverse the direction of the motor, using normal forward/reverse switch, on the fly and not have to completely stop it before reversing.

DC Motor & Direction Controller with Brake using MC33035 – [Link]

Introducing Autodesk Circuits Simulator For Beginner

Circuits.io is an online platform created by Autodesk for hardware hackers. It provides a browser-based application for designing, simulating electronic circuits and creating PCB boards. Autodesk circuits simulator can simulate Arduino-based projects for testing designs and programs before creating them in real life.

tumblr_inline_myzj7r9yiv1qal3cc

The simulator allows you to learn electronics using a virtual Arduino board and breadboard without blowing up capacitors or burning yourself with solder on your work table. It is free to use, but more features are available with premium accounts. To start using circuits.io just go to the website, create an account, and start building your circuit.

This instructable guides you to get familiar using the simulator through three different projects. You will only need a computer with internet access, and you can build these projects in real if you have the components.

In this tutorial you will work with these parts:

  • Arduino Board, the brain of your circuits.
  • Breadboard, the board where you will connect the elements.
  • Breadboard wires.
  • Resistors.
  • LEDs.
  • Potentiometer.
  • LCD.
  • DC motor.

The first project is simple and easy, it is about making a LED turn on and off continuously. The circuit consists of only one resistor and one LED connected with the Arduino, which will turn the LED on and off for a period of time defined in the code.

blink

Another simple project is based on the LCD (Liquid Crystal Display) which receives information from Arduino and displays it. You can program the Arduino to display a message you want, control its location, make it blink, or move the message on the screen. You will also use a resistor and a potentiometer to control the brightness of the backlight.

lcd

In the third project you will control DC motor speed and its spins in Autodesk Circuits. The motor must be fed by an external power source, and the Arduino will control the current flow to the motor through the TIP120 transistor.

motor

The full instructions and guides are available in this instructable. When you finish making these projects you can explore the simulator features and components, and start building your own projects.

2.5A Bipolar Stepper Motor Driver using A3979

2-5a-bipolar-stepper-motor-driver-m075a-500x500

The tiny board designed using A3979 IC from ALLEGRO which is complete micro stepping driver with built in translator. The translator is the key to the easy implementation of the A3979. It allows the simple input of one pulse on the STEP pin to drive the motor one micro step, which can be either a full step, half, quarter, or sixteenth, depending on the setting of the MS1 and MS2 logic inputs. There are no phase-sequence tables, high-frequency control lines, or complex interfaces to program. The A3979 interface is an ideal fit for applications where a complex microprocessor is unavailable or is overburdened.

Features

  • CN1 Motor Supply Input Up to 30V DC (35V Maximum)
  • Load 2.5A
  • Logic Supply 3.3V to 5V DC
  • CN3 Bipolar Stepper Motor Connections
  • CN2 Logic Supply 5V & Signal Inputs
  • J1-MS2 & J2-MS1 Micro-Stepping FULL, HALF, Quarter, Sixteenth
  • J3, J4 Option Replacement for PR1 Jumper Type Current Setting
  • D1 Logic Power LED
  • REF (PR1) Current Adjust 0-2V

2.5A Bipolar Stepper Motor Driver using A3979 – [Link]

L293D Motor Direction Controller

f0uiidbit9pphrc-medium

baelza.bubba @ instructables.com show us how to build a DC motor direction controller using L293D.

I designed this DC Motor Direction Controller so that I could give direction control to DC motors that I am building into mini tools (drill, lathe, table saw, solder smoke extractor, etc.). While, I don’t need direction control for all of the tools that I’m building, it IS necessary for some. Plus, who doesn’t want to spin their DC motor backwards?

L293D Motor Direction Controller – [Link]

A DIY obstacle avoiding robot using an SG90 servo and Ultrasonic Sensor

In this video educ8s.tv shows us how to build an Arduino Robot that can avoid obstacles:

The robot that we are going to build today is moving around and it can detect obstacles and avoid them. It uses a supersonic distance sensor in order to measure the distance from its front side. When it detects and obstacle it stops, goes backward for a few cms, looks around and then it turns to the direction with the more space available. As you are going to find out, building this impressive little robot is extremely easy and fun. It will not take you more than a couple of hours from start to finish. Then you can use my code, modify it and implement your own robot behavior easily. It is a great learning experience and great introduction to robotics for kids and adults. Let’s build it!

A DIY obstacle avoiding robot using an SG90 servo and Ultrasonic Sensor [Link]