Tag Archives: Motor

Arduino Tutorial: Using a Servo SG90 with Arduino

educ8s.tv shows us how to use a servo motor with Arduino UNO:

A Servo is a small device that has an output shaft. This shaft can be positioned to specific angular positions by sending the servo a coded signal. That’s why we need the Arduino, in oder to send that signal to the servo. Servos in general require a lot of current to operate since they have a motor inside. If you only need to control one small servo like this one you can connect it directly to Arduino. If you need to control two or more servos you need an external power supply or battery pack. Today we are going to use only one servo so we are going to connect it directly to an Arduino Uno. We are using an SG90 micro servo today which is a very popular one and very cheap. It costs around 3$.

Arduino Tutorial: Using a Servo SG90 with Arduino – [Link]

Dual Motor L298 H-Bridge Motor Control

IMG

Dual Motor L298 H-Bridge Control project can control two DC motors connected to it. The circuit has been designed around popular dual H-Bridge L298 from ST. This circuit has current sense resistors for both H-bridges to provide voltage which enables this board to use in stepper motor applications.

Specifications

  • Motor supply : 7 to 46 VDC
  • Control Logic Supply : Standard TTL logic level
  • Output DC drive to motor : up to 2 A each
  • Current Sense Output available
  • Enable and direction control pins available
  • External diode bridge for protection
  • Heat-sink for IC
  • Power-On LED indicator
  • Screw terminal connector for easy input supply (PWR) / output (Motor) connection
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 61 mm x 63 mm

Dual Motor L298 H-Bridge Motor Control – [Link]

L293D Motor Controller Tutorial

FL0ARNEIHUUE4KR.MEDIUM

Sooncheng @ instructables.com shows us how to control a DC motor using the L293D IC and an Arduino:

L293D is a chip that enable us to control two motors together with only one Arduino board or other microcontrollers. However, I was having a project that required controlling four DC motors together. Recently i brought a L293D Arduino Shields , it covered all of my pins that i need to use them to connect with other breakout board to combine with the motor controller (of course you can buy a L298N motor controller) . I made it, so i decided to share it with u guys now. So let’s get started.

L293D Motor Controller Tutorial – [Link]

DC Motor IR2104 H-BRIDGE

IMG_0297

H-Bridge has been designed around IR2104 IC from international Rectifier. The board has been made mainly for DC-Motor application. The driver can handle load up to 8-10Amps. I have tested this board with 36V DC supply . The circuit uses N Channel IR540 MOSFETS from international rectifier. IR540 requires large heat sink for 10Amps load.  Board has shunt resistor to provide voltage proportional to current flowing through load. This can be later amplify and connect it to microcontroller.

Features

  • Motor DC Supply 36V DC (Screw Terminal Connector)
  • Logic Supply 12V DC
  • Load 8-10Amps (Screw Terminal Connector)
  • Header Connector for Inputs (7 Pin Header Connector)
  • On Board Shunt Resistor for Current feedback
  • PWM Frequency 10 to 20 KHz
  • Duty Cycle 0-99%
  • Logic Pins support 3.3V, 5V, 12V (Inputs and PWM)

DC Motor IR2104 H-BRIDGE – [Link]

3A Unipolar Stepper Motor Driver

M031_2

This tiny Unipolar stepper motor driver has been designed around SLA7078MPR IC from Sanken, It is unipolar stepper Motor driver can handle current up to 3 Amps, micro-stepping up to 1/16 steps. On-board Jumpers to set the Micro-stepping, Preset (Potentiometer) to set the current.

The SLA7070MPR series motor driver ICs features unipolar drivers. The clock-in type input interface allows simplified control logic, and options for built-in sense current detection and load circuit short or open protection (patent pending) provide lower loss, and lower thermal resistance.

The built-in excitation distribution circuit (sequencer) allows motor control using only the CLOCK signal for simple operations (rotate/stop), with motor speed control by frequency input into CLOCK pin. This eliminates logic signal lines required for conventional phase-input methods, and reduces demand on heavily-used CPUs.

Unipolar stepper board is high efficient stepper driver for Unipolar stepper motor been design for various application like robotics, control routers, lathes, mills, PCB drillers and engravers.

3A Unipolar Stepper Motor Driver – [Link]

DC Servo Motor Driver – Analog Closed Loop Control

DC_SERVO_PIC

Versatile project has been designed to use in automotive application and industrial servo control application. This project provides all active necessary functions for closed loop servo system using Brushed DC Motor and potentiometer mounted on output shaft of DC Motor Gear. This project is ideally suited for almost any servo positioning application.

Features

  • POWER SUPPLY: 12-30V DC
  • MOTOR LOAD: 800mA MAX
  • P2: Position Potentiometer
  • P1: Fed Back potentiometer couple with DC Gear Motor output shaft
  • CN1: Power Input 12V-30V DC
  • Motor: DC Motor

DC Servo Motor Driver – Analog Closed Loop Control – [Link]

DRV8871 – 3.6A Brushed DC Motor Driver

DRV8871

The DRV8871 is a brushed-DC motor driver for printers, appliances, industrial equipment, and other small machines. Two logic inputs control the H-bridge driver, which consists of four N-channel MOSFETs that can control motors bidirectionally with up to 3.6-A peak current. The inputs can be pulse-width modulated (PWM) to control motor speed, using a choice of current-decay modes. Setting both inputs low enters a low-power sleep mode.

DRV8871 – 3.6A Brushed DC Motor Driver – [Link]

RC Servo Driver 0-5V

Servo_Driver_Photo

0 – 5V Servo Controller project will control a hobby type servo motor connected to it via a preset or external DC source.  This kit will be ideal add on in animatronics and motion control application.

This is a simple but a useful circuit to control a single servo motor.  Its an ideal add on to a RC Hobbyist tool kit. The DC input to this circuit should be 5 to 6 VDC.  DC signal is given to this board at connector marked CN1 (+V and GND).   You can also feed in a variable DC signal source at the other two pins on this connector to control the servo.  To use this signal source you need to place the Jumper link at J1 in the E position.  Alternatively, you can also control the servo motor by preset PR1 mounted on the PCB.  For this you need to place the Jumper link in the I position at J1.A Servo motor is connected at connector marked CN2 on the PCB.  This connector has all the pins clearly marked for connection to the servo.LED D1 is a power on indicator ,  Diode D2 provides a reverse polarity protection for the Microcontroller.

Specifications

  • Microcontroller based design for greater flexibility and ease of control
  • Single Servo control via clearly marked berg connector
  • Clearly marked jumper to select signal source to control the Servo
  • Onboard preset for ready to control option for this kit
  • Power-on LED indicator
  • Diode protection for reverse polarity connection of DC supply to the PCB
  • Four mounting holes 3.2 mm each
  • PCB dimensions 45 mm x 32 mm

RC Servo Driver 0-5V – [Link]

Control servo motors with potentiometers and Arduino

FE4VAXPIFY9BOK5.MEDIUM

by break_it_fix_it @ instructables.com:

I needed to be able to control 3 different servo motors by altering the position of 3 potentiometers. There are lots of people out there doing things like this, but I couldn’t find an exact match for everything I needed, so I decided to post up this instructable to bring everything I learned together in one place so that anyone else who wanted to do something like this could get it up and running quickly. This instructable is really a summary of other peoples excellent work and effort.

Control servo motors with potentiometers and Arduino – [Link]

RF Remote DC Motor Direction Controller

H003

RF Based DC Motor Direction Controller project provides an easy way to control the direction of your DC Motor connected to the receiver. This project has been design around HT12E and HT12D encoder / decoder chips from Holtek. With jumper selectable address on the receiver and transmitter we can control multiple motors in one area without interference with one remote.

Application

  • Remote Motorized Volume Control
  • Remote Toy or Robot Controller
  • Remote Controlled Curtains

RF Remote DC Motor Direction Controller – [Link]