Tag Archives: OLED

eVscope – Reaching for the stars as never before

Humanity has always been trying to reach for the stars, this lead to huge scientific developments that got the man into the moon, rovers into mars and a lot more. NASA often unveils photographs of space objects with bright colors and high definition, but these photos are taken using millions of dollars in telescopes and image software. Most amateur telescopes give blurry, opaque images (if you get to see anything at all). As a result, astronomy amateurs are often disappointed because of their high expectations regarding what they would see in the telescope. The company Unistellar optics combined two different technics to create a telescope that could fulfill hobbyist expectations.

As only a very small amount of light from stellar objects reaches earth, it’s important to collect as much light as possible which can be done with a lens (or mirror with a large diameter), or by exposing a photographic film for a long period of time. Nowadays, astronomers don´t use photographic film anymore because electronic cameras can take hundreds of pictures and overlap them to make one bright picture. However, the equipment to do all this can be expensive (professional camera, good telescope, mirrors with huge diameters), and they can also be complicated because of the need for a very dark sky, certain weather etc.

The eVscope (enhanced vision) made by Unistellar optics has a built in high quality image sensor, and instead of lenses an eye piece with an OLED display is used. Additionally, it has a computer controlled mount and drive, all in modest dimensions. It costs about 1300 dollars and works by taking short exposures and staking them in real time to simulate a larger instrument.

This device has already been tried by many amateur astronomers, and university students with very positive results. Also, the eVscope has an autonomous field detection which makes it easy for learners to pinpoint specific places, and with the smartphone connection capabilities people can save and share their pictures, and unlike other telescopes it is portable and autonomous. Currently, Unistellar optics has a Kickstarter campaign for this product with more than 2000 backers. eVscope is 100 times more powerful than a classical telescope and could change the way people see the sky and learn about astronomy.

[source]

Arduino Breathalyzer Using MQ3 Gas sensor and OLED Display

A breathalyzer is a generalized trademarked name for devices used for determining blood alcohol content from a breath sample. This means the device can detect from your breadth, the amount of alcohol you have taken. This device becomes very useful when you consider several cases of accidents caused by drunk driving. With this device, you can easily warn the driver of a car when he/she is too drunk to drive a car. It is important to note that this project is not accurate enough to replace the standard breathalyzer and you shouldn’t drink and drive.

For this project, we will be using the MQ3 alcohol sensor. It is a cheap semiconductor sensor capable of detecting the presence of alcohol in air at concentrations between the value 0.05 mg/L to 10 mg/L. The sensor uses a chemical reaction to determine alcohol level and the primary sensing element in the sensor is SnO2, the conductivity of SnO2 is low in clean air but increases as the concentration of alcohol gas in air (breath) increases. It has high sensitivity to alcohol and has a good resistance to disturbances and noise from things like smoke and gasoline.

Arduino Breathalyzer Using MQ3 Gas sensor and OLED Display – [Link]

Four-Channel Thermometer on OLED display

David Johnson-Davies @ technoblogy.com build a four-channel thermometer that monitors the temperature at four temperature sensors, and gives a continuous readout on a small 128×32 OLED display. It’s a useful project for various applications like PSU or PC monitoring. The article describes 1-wire and code in details.

It could be used in any application where you want to monitor multiple temperatures, such as in controlling a greenhouse, checking the output transistors in a power amplifier, monitoring key points in an overclocked gaming PC, monitoring the chips on a Raspberry Pi, or checking the temperature in different rooms in a home.

Four-Channel Thermometer on OLED display – [Link]

ESP32 NTP OLED clock

@ blog.danman.eu build a OLED display NTP clock and document his process on his blog:

As a first project with my new ESP32 module with OLED display I chose to build OLED clock. I thought I’ll just find some existing code, upload it and it’s done. There are a few such projects for ESP8266 in NodeMCU. So I started with NodeMCU upload.

ESP32 NTP OLED clock – [Link]

GAME BYTE – Retro gaming system

Game Byte the open source gaming system for creating, sharing, and playing games is live on kickstarter. Over 100 free games. Make your own games.

Game Byte is an open source gaming system for creating, sharing, and playing games. It’s SMALL! About the size of a credit card and fits in your pocket so you can take it with you wherever you go. You can play one of the over 100 free games available or learn how to create your own. The built in microSD card slot allows you to store your games on an SD card without plugging into a computer.

Digital UV-meter with OLED Display

@ instructables.com build a nice VU meter using Arduino and an OLED display.

Hello, instructable. Today I will tell you how to make a simple digital VU meter (sound level meter) using Arduino and OLED displays and 2 resistors by yourself (DIY). The device is quite simple, for beginners it will be a rewarding experience.

Digital UV-meter with OLED Display – [Link]

ATtiny85 Tiny OLED Watch

An ATtiny85 and a 64×48 OLED display hand clock:

This is the third in my series of minimalist watches based on the ATtiny85. This version displays the time by drawing an analogue watch face on a miniature 64×48 OLED display. It uses a separate crystal-controlled low-power RTC chip to keep time to within a few seconds a month, and puts the processor and display to sleep when not showing the time to give a battery life of over a year.

ATtiny85 Tiny OLED Watch – [Link]

RELATED POSTS

Soldering pen for Weller RT tips with OLED display

vlk @ hackaday.io build a very nice soldering pen with a OLED display.

I found some projects where is used Weller soldering tips designed for WMRP soldering iron with standard 3.5mm jack and inside the tip is also thermocouple for sensing temperature. These tips are not so cheap but the quality is really great, especially for fine soldering.

Hardware design is based on similar projects but with some modifications and improvements. Also my request was to make the hardware small as possible to fit into handle and capable to supply from hobbyist LiPO battery.

Soldering pen for Weller RT tips with OLED display – [Link]

Using I2C SSD1306 OLED Display With Arduino

Sometimes it may be necessary to use a display when making a hardware project, but one confusing thing is the size of the display and the required pins to control it. This tutorial will show you how to use a small I2C OLED display with Arduino using only two wires.

The display used in this tutorial has a very small (2.7 x 2.8cm) OLED screen, that is similar to Arduino Pro Mini size, with 128 x 64 screen resolution. The OLED Driver IC is SSD1306, a single-chip CMOS OLED/PLED driver with controller for organic / polymer light emitting diode dot-matrix graphic display system. The module has only 4 pins, two of them are the supply pins, while the others are SCL and SDA, I2C protocol pins, which will be used to control the display.

Using I2C SSD1306 OLED Display With Arduino – [Link]

Pixel 2.0, Arduino Zero-Like Board With Smart Display

The Pixel is an Arduino-compatible smart display, combining a 32-bit Cortex M0+ MCU with 32K of RAM, a 1.5″ 128×128 color OLED screen, and a microSD slot all in one package.

This is Rabid Prototypes’ second iteration of Pixel, which originally raised nearly $10,000 on Kickstarter back in 2015. The board offers a number of potential use cases, ranging from wearable devices, to sensor data monitors, to retro video game consoles.

The Pixel is compatible with Arduino’s SPI and SD libraries, as well as Adafruit’s graphics library, which provides functions for blitting images, drawing primitives like lines and circles, and even includes bitmapped font support.

Additionally, if you ever need to modify the fuses or bootloader, the Pixel features a standard SWD header that can be used with Microchip’s Atmel-ICE development tool.

Here are the technical specifications of Pixel:

  • Microcontroller: Atmel ATSAMD21G18 ARM Cortex M0+
  • Clock speed: 48 MHz
  • Operating voltage: 3.3V
  • I/O pin limits: 3.3V, 7 mA
  • Digital I/O pins: 14, with 12 PWM
  • Analog input pins: 6, 12-bit ADC channels
  • Analog output pins: 1, 10-bit DAC
  • Flash memory: 256 KB
  • SRAM: 32 KB
  • Voltage regulator: 3.7V – 5.5V input / 3.3V, 300mA output
  • PCB Dimensions: 1.8 x 1.8″ (46mm x 46mm)
  • Display : 128×128 16-bit color 1.5″ (38mm) OLED w/ SSD1351 driver

Pixel is now live on Kickstarter! you can get your own Pixel 2.0 for $75 or two for only $135. The campaign still has 12 days to go, check its video to know further details about Pixel 2.0:

Source: Hackster Blog