Tag Archives: Oscilloscope

Choosing $1 sound card for DC-capable low speed oscilloscope


Tomasz Ostrowski has tested some cheap USB sound cards as low speed oscilloscope interfaces/recorders. He writes:

I’ve tested some cheap ($1) USB sound cards for DC sampling capability, in particular for using as low speed oscilloscope/signal recorder. Some (http://tomeko.net/dsoundscope/c_media.php or one from this thread: http://www.elektroda.pl/rtvforum/topic3106124.html) don’t seem to work despite removing DC blocking capacitor, but this one: http://tomeko.net/dsoundscope/C_Media2/ is fine. With just 120k resistor connected it is able to measure voltage from 0-6V range (cons: its input is at 2V level, sourcing 8uA if connected to GND and it’s single channel only). For test purposes I’ve prepared DLL interface for miniscope v4 (Win32 oscilloscope GUI) calibrated for this particular setup (example traces available).

Choosing $1 sound card for DC-capable low speed oscilloscope – [Link]

DIY Oscilloscope using Arduino and Graphic LCD

Prasad Pandit @ youtube.com:

I have designed an Oscilloscope using Arduino Mega 2560 and 128×64 GLCD. It works pretty good for verification of signal the range of input frequency is upto 10-12MHz and Sampling rate is 200KSPS. It has no Attenuation so you will have to convert highvoltage signal to 5 v pTp signal. And yes for Sine wave or Cos wave or signal which is below ground voltage you will have to DC shift the signal. You can set the Time/Division for studying signal. It gives Peak to Peak voltage value of signal in Real Time till two decimals.

All the Arduino GLCD libraries used are freely available. If you have suggestions mail me on: prasadp4009@gmail.com
Code Link : https://db.tt/itk4CLwi

DIY Oscilloscope using Arduino and Graphic LCD – [Link]

Compensation of Oscilloscope Probes


by Maurizio @ dev.emcelettronica.com:

Using simple wires to measure signals with the oscilloscope would result in unreadable plots on the scope, the main reason being the noise coupled onto the “probe” itself. The first line of defense against that would be to use a coaxial cable as a probe, which would prevent external noise coupling.

An unwanted deterioration of the measured signal is due to the capacitive loading that such a piece of cable adds to the signal. An equivalent schematic of an IC to IC signal is illustrated in figure 1.

Compensation of Oscilloscope Probes – [Link]

Open source pocket USB oscilloscope; 30 MHz, multi-platform


by Graham Prophet @ edn-europe.com:

Running on Apple iPad, Android, Microsoft Windows and Linux, LabNation’s (Antwerp, Belgium) open source USB oscilloscope, SmartScope, is the result of a Kickstarter campaign commenced in 2014 – the project raised 645% of the funding goal within 30 days.

Believed to be the first test equipment designed to run on multiple operating systems and platforms such as smartphones, tablets and PCs, the lightweight SmartScope is powered directly from the host’s USB interface suiting it for many test and measurement applications far from the workbench.

Open source pocket USB oscilloscope; 30 MHz, multi-platform – [Link]

Miniscope v2f


Here is another variant (after miniscope v2a, b, c, d, e) of simple PC/USB oscilloscope/recorder:


It extends miniscope v2e with PGA (MCP6S21) offering same sampling frequency (480 ksps, 8 bit real time streaming to PC allowing continuous recording up to 512M samples) but 8 gain ranges and high input impedance. Estimated price is $6 – $7 if using homemade PCB (single sided, 1.35 sq inches).

Miniscope v2f – [Link]

LabNation SmartScope: unique multi-platform USB oscilloscope


The SmartScope designed by the young Belgian company LabNation is — to our knowledge — the only oscilloscope that works with all popular operating systems: Windows 7/8, Linux, OS X, iOS (jailbroken) and Android 4.0+. So the software can run on a standard PC or laptop, but also on a tablet or smartphone. The control interface is specifically designed to operate with touch-screen or mouse and is equipped with various software decoders (such as I2C and SPI) for decoding digital signals.

The Smart Scope hardware consists of a small metal housing (for good protection) with the front two full BNC connectors for analog inputs, and at the rear a 16-pin header which has 8 digital inputs for the logic analyzer. Four digital outputs and an output for the built-in arbitrary waveform generator (AWG) are available. The sampling frequency of the analog and digital inputs is 100 Msamples/s, the maximum data rate of the AWG is 50 Msamples/s.

LabNation SmartScope: unique multi-platform USB oscilloscope – [Link]