Tag Archives: PIC12F683

Electronic Live Capture Mousetrap

A mousetrap is a type of animal trap specialize to catch small animals, particularly rodents like rats, mice, hamsters, etc. This project is a kind of mousetrap that is intended to keep a captured animal alive. In this way, the hunter can release the captured animal later to the wild.

The PIC12F683 microcontroller acts as the heart of the project; it is programmed to meet function of the design. The sensor used in this project is a pair of infrared transmitter and receiver. An infrared LED connected to the GP2 pin of the PIC12F683 transmits continuous infrared signal to the TSOP1138 infrared receiver connected to the GP1 pin of the PIC12F683. To avoid the effect of ambient light, the generated signal at GP2 pin to the infrared LED is modulated at 38kHz frequency. Once the infrared beam is broken, the GP1 input changes, thus, the PIC12F683 reacts by triggering the GP4 pin connected to the BS170 MOSFET that act as a switch of the relay. The relay switch is set to shut the door when triggered. A push button connected at GP3 pin of the PIC12F683 is used for reset.

This project has a simple concept; the trap is built on a box fitted for a rodent to enter. The bait is placed inside the box to lure the rodent in. A sensor will be triggered once the rodent is inside the box, then a single door will shut lock behind the captured rodent.

Electronic Live Capture Mousetrap – [Link]

PIC12F683 based battery charger

PICbatteryCharger

by embedded-lab.com:

Here’s an Instructable about a DIY charger for car’s battery with an analog DC ammeter in the front panel. A PIC12F683-based control circuit is enclosed inside which adds some intelligence to this charger. The PIC MCU checks the terminal voltage of the battery being charged in every ten minutes using one of its analog inputs, and if it is found above a set threshold, the charging process is stopped. A relay switch is included into the circuit to connect/disconnect the charger output and the battery terminals.

PIC12F683 based battery charger – [Link]

Making a mini LED Christmas tree

ChristmasTreeTitle

Raj @ embedded-lab.com build a mini LED Christmas tree for his son. He writes:

My two and a half year old son loves toys with flashing lights. For this Christmas I thought of making a mini LED Christmas tree for him. This project uses 22 multi-color LEDs which are driven by a PIC12F683 microcontroller using the Charlieplexing technique. The details of the build procedure is described in the following sections.

Making a mini LED Christmas tree – [Link]

Making a simple clap switch

A clap switch is a fun project for beginners. It switches on and off electrical appliances with a sound of clapping hands. Today we will discuss about making a simple clap switch that operates when it detects two clapping sounds in a row. It uses an electret microphone as a transducer for converting a clapping sound into an electrical signal. The microcphone output is amplified by a transistor and is then sent to the PIC12F683 microcontroller which performs an ON/OFF switching action when valid claps are detected.

Making a simple clap switch – [Link]

0-9999 seconds count down timer using PIC12F683 microcontroller

embedded-lab.com writes:

The goal of this project is to construct a simple 0-9999 seconds count down timer with an alarm and a display. The time is set through two tact switches and the count down seconds are displayed on a 4-digit seven segment LED display. The project uses PIC12F683 microcontroller for all I/O and timing operations and MAX7219 IC for driving the seven segment LED module. The time out condition is indicated by an audible alarm from a buzzer.

0-9999 seconds count down timer using PIC12F683 microcontroller – [Link]

Connecting multiple tact switches on a single input pin of a microcontroller

Normally one tact switch requires one digital input pin of a microcontroller. Some designs implement keypad style multiplexing to get multiple switches on fewer inputs. However, there exist other techniques that allow you to connect many switches on a single input pin of a microcontroller. This tutorial demonstrates one such technique as applied to PIC12F683 microcontroller. In this example, there are four LEDs and four tact switches connected to the PIC12F683 microcontroller. While each LED is controlled through an individual I/O pin, the four switches are connected to one ADC input pin of the PIC12F683 microcontroller.

Connecting multiple tact switches on a single input pin of a microcontroller – [Link]

Building your own Simple Laser Projector using the Microchip PIC12F683

ermicro.com writes:

The 8 pins PIC12F683 microcontroller is one of the smallest members of the Microchip 8-bit microcontroller families but equipped with powerful peripherals such as ADC and PWM capabilities. This make this tiny microcontroller is suitable for controlling the DC motor speed. In order to demonstrate the PIC12F683 capabilities and to make this tutorial more attractive, I decided to use the PIC12F683 microcontroller to generate simple and yet fascinating laser light show from a cheap keychain laser pointer.

Building your own Simple Laser Projector using the Microchip PIC12F683 – [Link]

Expand the I/O capability of your microcontroller with MCP23008

A microcontroller comes with a limited number of input/output lines. If you need an additional 8-bit port in your project without replacing the microcontroller, MCO23008 might be a good choice. It is an I2C compatible port expander and provide eight bidirectional I/O lines for I2C bus. The following tutorial describes the functioning of MCP23008 and its interface with a 8-pin microcontroller like PIC12F683.

Expand the I/O capability of your microcontroller with MCP23008 – [Link]