Tag Archives: Power supply

5V & 12V Regulated Power Supply


This project can be used to power up TTL and CMOS based projects, it provides 5 VDC & 12 VDC outputs with an onboard mains transformer.  The project is based on the industry popular 7800 series voltage regulator in TO220 packages.


  • Input: 240 VAC
  • Output: 5 V, 12 V @ 600 mA regulated low ripple DC voltage
  • Thermal overload/short circuit protection (provided by IC feature)
  • Power Battery Terminal (PBT) for easy input and output connection
  • External On/Off switch connection possible
  • LED indication for outputs
  • Four mounting holes of 3.2 mm each
  • PCB dimensions 87 mm x 49 mm

5V & 12V Regulated Power Supply – [Link]

3A Variable Bench PSU with Color Display


by SHARANYADAS @ instructables.com:

I am playing with electronics since i was a child and made numerous circuits.But still now,i didn’t made any power supply unit for general purpose use.So tired of making PSU for each circuit,I decided to make a stable Bench PSU for general purpose use with some enhanced features.I decided to made the core power supply analog controlled and extra features digitally controlled. So that’s why i choose LM350 linear regulator chip as the heart because 3A is sufficient for day to day use.

3A Variable Bench PSU with Color Display – [Link]

Teardown & Repair of a Stanford Research PS350 5000V, 25W High Voltage Power Supply

In this episode Shahriar repairs a Stanford Research Systems Model PS350 5000V-25W High Voltage Power Supply. The unit continuously displays 2.5kV without the output being enabled and produces no output voltage. Verification of power supply voltages reveals the issue is linked to a disconnected 15V voltage regulator IC. After the repair, the output voltage is verified with both positive and negative outputs. The principle operation of the instrument as well as the Cockroft-Walton high voltage generator is reviewed.

Teardown & Repair of a Stanford Research PS350 5000V, 25W High Voltage Power Supply – [Link]

Hardware Protection – OverVoltage and OverCurrent


Maurizio @ dev.emcelettronica.com discuss about the different aspects of protecting power supplies from overvoltage and overcurrent.

Power processing is one of the most important aspects on electronic design. The power is unique for a typical system because it gives the system life. Before starting to make the project for a power supply we need to analyze some aspects: Which kind of radio/electromagnetic interference is the device going to face ? What about maintenance requirements? And finally which environment conditions (temperature, humidity, vibrations) will the device be exposed to?

Hardware Protection – OverVoltage and OverCurrent – [Link]

Laser Diode Driver


Laser Diode Driver project will help you safely drive (constant current) a 3 mW visible Laser Diode for your application.

  • Input supply – 2.5 to 6 VDC
  • Onboard preset to adjust the current flow to the Laser Diode
  • Power-On LED indicator
  • Header connector for easy input supply and LASER DIODE module connection
  • Laser diode is not included
  • Circuit is designed around Sanyo DL3148-025 LASER DIODE
  • PCB dimensions 37 mm x 42 mm

Laser Diode Driver – [Link]

USB power supply active load tester


Sasa Karanovic has designed and built a DIY USB power Supply active load tester, that is available at GitHub:

USB Power supply Active Load Tester or short PAL Tester is unit designed for testing the quality of the power supplies.
Idea was to create low-cost, precise device for simultaneous measurement of Voltage and Current drawn from the device under test.

USB power supply active load tester – [Link]

50,000V High Voltage Power Supply


by Victor8o5 @ instructables.com:

This high voltage power supply has been designed to output a fixed voltage of around 50kV, it could easily be converted to an adjustable supply by connecting a variac in case of using transformers or by adding some extra circuitry to regulate the power going in. I initially thought about a high frequency PWM to regulate the power going into the capacitors, but I abandoned the idea. I found that adjusting the frequency is enough to make the voltage vary by a significant amount, allowing some control over it, this happens because the flyback must operate at a certain frequency in order to maximize the output.

50,000V High Voltage Power Supply – [Link]

Do you know, what´s a top-class programmable power supply capable of?


If you need to simulate overvoltage, slow start, fluctuations and other situations, which may occur in real life, then the TDK Lambda power supplies won´t disappoint you.

Imagine a laboratory (testing) power supply able to provide a virtually any function. Switching on, drop-out, repeated switch-on and many other functions, by which we can test our product in a „single shot“ – those are programmable laboratory power supplies from company TDK Lambda. Perhaps the biggest advantage of programmable power supply is the fact, that there´s no need to adjust, watch, set at testing itself. It´s obvious that this sophisticated device is feelingly more expensive than usual laboratory power supplies, however it´s able to bring enormous time savings and reliability into your work.
In majority of cases it´s possible to reach simulation of a real-life voltage fluctuations, dropouts, disturbances,… This „dynamic“ testing is also able to discover the risk of „freezing“ of your product (undervoltage lockout) at a short-time undervoltage..

Company TDK Lambda belongs to the very top in this segment and its devices provide a literally unlimited possibilities of usage, configuration and control. Whether it´s extremely fast response, possibility of a parallel operation of several units, control over LAN,USB, RS485, GPIB,… almost all possibilities and options known in this field can be found in the TDK Lambda power supplies.

Main series:

  • Z+ (200-800W) – extraordinarily low and compact series. Arbitrary functions generator with 16 bit resolution (+ inner memory), max. output voltage 10-650 VDC. RS232/485, USB and analogue interface. Active PFC (typically 0,99). Advanced parallel master/slave mode.
  • ZUP (200-800W) – max. out voltage 6-120V, max 132A. CC/CV, software calibration, last setting memory, active PFC. RS232/485 and analogue interface.
  • GENESYS (750-15000W) – extraordinary reliability and power. Max 650V, max 1000A. Auto-restart or safe start (user selectable). Last setting memory, available in four sizes – GENH, GEN 1U, GEN 2U and GEN 3U. Optional USB or LAN interface and further accessories.

Possibilities of power supplies are really extensive what´s illustrated in enclosed pictures. Detailed information will provide you the catalogue of programmable laboratory power supplies as well as in the TDK Lambda powers supplies and DC-DC converters brochure.

We´re able to supply you TDK Lambda products within 4-12 weeks at advantageous conditions.

Do you know, what´s a top-class programmable power supply capable of? – [Link]

An adapter with standby power consumption below 0.1W already on stock


New series of Friwo FOX mains adapters meets the most stringent energy regulations already now and at the same time it´s more compact than its predecessors.

DoE 2016 is a known term naming stringent regulations established by DoE (department of energy USA) valid from year 2016. Among other things it brings a requirement for a standby power consumption of small adapters to be below 0.1W. In Europe we have here a limit of 0.5W for majority of small adapters, but even here can be expected toughening in the nearest years.

That´s why German company Friwo as a long-term long-term OEM producer of power supplies and adapters comes with a new line of mains adapters named “FOX”. Besides high efficiency, these power supplies are also extraordinarily compact. Already recent series MPP and GPP are very compact, but FOX is a “step further”, as also illustrated on attached picture. System of exchangeable primary and secondary adapters (connectors) enables to use the same power supply for various applications and in various countries.

Even the FOX series meets various international requirements and obtained many approvals. a medical version will be also available soon. The FOX series is a novelty – 12W types are available upon order. Gradually also other types – FOX 18, FOX 30 a FOX 6 will be produced.
FOX series, as the only type on the market that meets criteria for IP42 protection – with selected primary adapters (connectors).
The first type from the FOX series – FOX 12 Office 5V/2200mA (1896623) with the 5V output voltage can be already found in our standard stock offer. As the power supply is designed as “modular”, it´s necessary to also buy appropriate primary and secondary adapter (connector) and the output cable, i.e. for example FOX Adapter/EURO (1844847) , COAXCON5.5/2.1/9.5 (1807700) and FOX Distribution DC-Cord.

An adapter with standby power consumption below 0.1W already on stock – [Link]