Tag Archives: Power supply

Versatile And Open Source LiPo bBattery Breadboard Power Supply

Orlando Hoilett from Calvary Engineering LLC designed a  versatile Li-Po battery breadboard power supply and wrote an Instructables on it. This power supply outputs 3.3V to the breadboard and takes input from a single-cell LiPo battery. The breadboard power supply also has the ability to charge the battery without needing to separate it from the circuit board. More importantly, this project is licensed under Open Source Hardware which means anyone can modify, distribute, make, and sell this design.

LiPo bread board power supply
LiPo breadboard power supply

Key Components

The complete BOM is available at the GitHub repository.

  • JST connector
    This connector connects directly to the LiPo battery.
  • 3.3V regulator, AP2210K
    3.3V logic is getting increasingly popular among electronics hobbyists and engineers. Also, boosting 3.7V of a LiPo battery to 5V can induce quite a bit of switching noise on the power supply. Linearly converting 3.7V to 3.3V is the best way to avoid this problem.
  • Battery Charger, MCP73831T
    This power supply has a charger built into the board so you can charge the battery without removing it from the power supply.
  • Voltage Selection Jumper
    The voltage selection headers are 3 pin male headers and they are labeled as 3.3V (or VReg) and VRAW (or LiPo). Connect the center pin to 3.3V to get power from the regulator. Connect the center pin to VRAW to get power directly from the LiPo battery.
  • DPDT Switch
    This switch lets you power down the board without removing the battery.
  • LED indicators
    LEDs are used to indicate the current status of the board.

Details

This board breaks out the LiPo battery to the breadboard power rails on both sides. It has a DPDT switch to power down the board. The AP2210K IC has an ENABLE pin which is pulled down to the ground using the DPDT switch in order to enter the low power mode. In low power mode, the regulator and all the LEDs get disabled and draws almost no current from the LiPo. More about the AP2210K regulator IC is on this datasheet.

LiPo breadboard power supply schematic
LiPo breadboard power supply schematic

Another great feature of this breadboard power supply as mentioned earlier is, it incorporates an MCP73831T LiPo battery charger IC. It is a widely used PMIC (power management integrated circuit) for charging LiPo batteries. The LiPo battery should be connected to pin 3 (VBAT) and 5V should be applied to pin 4 (VDD).

The chip starts charging as soon as it detects 5V input and stops charging when the battery is full. Charging current is limited to USB standard i.e. 100mA by connecting a 10.2K resistor between pin 5 (PROG) and ground. So, it’s completely safe to charge the battery from your laptops USB port. Other host microcontrollers can check the battery status using pin 1 (status pin) of MCP73831T.

Keysight Technologies’ E36300 series bench power supplies

Martin Rowe @ edn.com presents the new Keysight E36300 bench power supply with triple output and some great features.

Keysight Technologies’ E36300 series of bench power supplies provide three outputs with power of 80 W or 160 W with line/load regulation of 0.01%. Front-panel buttons let you turn any output on or off and you can configure each output with 2-wire local sensing or 4-wire remote sensing. The 4-wire sensing removes losses caused by IR drops in your power-delivery wires.

Keysight Technologies’ E36300 series bench power supplies – [Link]

Linear Lab Power Supply with digital meter

@ instructables.com build a nice power supply for his lab. He writes:

From my point of view one of the best ways to get started in electronics is to build your own laboratory power supply. In this instructable I have tried to collect all the necessary steps so that anyone can construct his own.

All the parts of the assembly are directly orderable in digikey, ebay, amazon or aliexpress except the meter circuit. I made a custom meter circuit shield for Arduino able to measure up to 36V – 4A, with a resolution of 10mV – 1mA that can be used for other projects also.

Linear Lab Power Supply with digital meter – [Link]

Digital Battery Operated Powersupply

ThomasVDD @ instructables.com writes:

A while back I built a powersupply from an old ATX PSU, and while it works great, I wanted to step up my game with a digital powersupply. As already said, it is powered by batteries (2 lithium cells to be precise), and it can deliver a maximum of 20 V at 1 A; which is plenty for most of my projects that require a precise powersupply.

Digital Battery Operated Powersupply – [Link]

400V – 5A Power Supply For Brushless Motor Drivers

Although the power supply design is specific to the Brushless Servo Drivers mainly for IPM Modules, the concepts and circuit design may be used for any power supply requires high voltage output up to 400V DC and 5 Amps. The power supply is an unregulated design with an option to allow connection to either 120V or 230V mains and also it can work with lower voltage for audio amplifiers by increasing capacitor value. The design uses fully integrated bridge rectifier, and multiple bus capacitors for low ripple, noise suppression, and provides high current reservoirs. Additionally the dc supply line have bleeder resistor R2 and R3 to drain the large reservoir capacitors PCB, mounted fuse holder provided  for short circuit and over current protections, low ohm NTC used for inrush current at power start up,  C1, C12, TX protects  against turn on/off spikes and EMI noise reduction. This power supply can be used to drive Tesla Coils, Induction heaters, DC Motor drivers, Brushless DC motor driver.

400V – 5A Power Supply For Brushless Motor Drivers – [Link]

Reference design – USB Type-C charger delivers 18W

Graham Prophet @ eedesignnewseurope.com discuss about a 18W USB power supply reference design.

This joint reference design describes an 18W, USB PD compliant, AC-DC power converter. The design, titled DER-567, pairs the WT6630P USB Type-C PD controller from Weltrend with Power Integrations’ InnoSwitch-CP off-line CV/CC flyback switcher IC, to produce a compact and highly energy-efficient standards-compliant power adapter, that PI says will deliver faster charge times for the larger batteries required to power next-generation mobile devices.

Reference design – USB Type-C charger delivers 18W – [Link]

-5V @100mA Switched Capacitor Converter

The circuit diagram presented here is about a negative voltage regulator. It is based on LT1054, which is a switched capacitor voltage converter with regulator from Texas instrument. This device has many advantages over other previously available switched capacitor voltage converters. It provides higher current and has lower voltage losses.

Features:

  • Input Voltage: 3.5VDC to 15VDC
  • Output Voltage: -5VDC
  • Output load: 100mA
  • PCB: 60mm X 20mm

-5V @100mA Switched Capacitor Converter – [Link]

snapVCC – A snap-on regulated 3.3 V/5 V power supply

by Mahesh Venkitachalam @ hackaday.io:

I use 9 V batteries for a prototyping a lot of my electronics projects. I was inspired by the Sparkfun breadboard power supply board, and wanted to create something similar, but with a more convenient form factor for use with a 9V battery. The design I came up with, is a tiny snap-on PCB with the regulator components on one side, and 9V battery contacts on the other. The idea is that the power supply will become part of the battery.

snapVCC – A snap-on regulated 3.3 V/5 V power supply – [Link]

12V @ 120mA Transformerless Power Supply

The circuit provided here is a transformer-less non-isolated power supply which is capable of delivering an output of 12V at 120mA current for an input voltage varying from 85VAC-265VAC. The LNK304 is the heart of this circuit which supports buck boost and flyback topologies. This project is low in cost and simple when compared other tramsformer-less power supplies.

Features:

  • Input(V): 85V AC to 265V AC
  • Output(V): 12V DC
  • Output load: 120mA
  • PCB:75mm X 35mm

12V @ 120mA Transformerless Power Supply – [Link]

EEZ H24005, Two-Channel Programmable Power Supply

Envox Experimental Zone (EEZ) is an open hardware and open source development website, that creates and shares various open source hardware and software projects using as much as possible open-source tools and technologies.

One of their projects is the programmable bench power supply ‘EEZ H24005’. The goal is to make a reliable, modular, open and programmable power supply, that can be used for various tasks starting with powering breadboard, charge batteries of various types, or to be used as an educational tool and science experiments.

The EEZ H24005 is a DIY power supply unit consists of four PCBs and SMT electronics components except some power resistor, AC/DC adapter, and power regulators. Only two ICs need hot air soldering station to mount, while the remaining parts can be simply mounted with soldering iron.

Top Faces Of The Four PCBs
Bottom Faces Of The Four PCBs

To build this PSU you will need these tools:

In addition to modularity, programmability, openness, and DIY, reliability was one of the key features and design guidelines of the designing process. Because as a sourcing device, the PSU has to be designed in the way that no dangerous oscillation in voltage or current is present over the long period of deployment. That includes border case of turning the PSU on and off, applying or disconnecting load, etc.

Here is some of the main features of H24005:

  • Modular design that allows combining modules with various performance and capability and creation of multiple output solution
  • Voltage regulation (CV), 10 mV resolution
  • Current regulation (CC), 10 mA initial resolution
  • Various current single range operation (0-5 A default, 0-3 A or 0-4 A per channel)
  • 15-bit data acquisition resolution
  • Real-time clock (RTC) with supercap/battery backup
  • SD-card as an additional storage
  • Ethernet support for remote control
  • Simple DC output protection (reverse voltage, over-voltage)
H24005 PSU Block Diagram

Since it is an open source project, all files, designs, source codes are available at the Github repository. Also a detailed building guide is available at the official website. But if you want to get H24005 but not interested in making it, you can order yours through OSHPark. There is also a CrowdSupply campagin on going.