Tag Archives: pressure

Instrumentation Amplifier For Pressure Sensor

General purpose differential amplifier project has been designed for various pressure sensor amplifier applications. Circuit provided with multiple resistors, capacitors, dual sensor options and 4 pin Header connector to interface other external sensors. Schematic is an example from NXP application AN1318 Figure 2.

The most popular silicon pressure sensors are piezo-resistive bridges that produce a differential output.

Voltage output is in response to pressure applied to a thin silicon diaphragm. Output voltage for these sensors is generally 25 to 50 mV full scales. Interface to microcomputers, therefore, generally involves gaining up the relatively small output voltage, performing a differential to single ended conversion, and scaling the analog signal into a range appropriate for analog to digital conversion.

Instrumentation Amplifier For Pressure Sensor – [Link]

Bosch BME280 sensor combines pressure, humidity and temperature measurement

Bosch Sensortec announces a world first in sensor technology: the BME280 Integrated Environmental Unit combines sensors for pressure, humidity and temperature in a single package. This unique sensor has been developed to support a broad range of emerging high performance applications such as indoor navigation, home automation control, personalized weather stations and innovative sport and fitness applications. The precise altitude measurement function of the BME280 is a key requirement in applications such as indoor navigation with floor tracking where exceptional accuracy, low temperature drift and high resolution are needed. Additionally, the BME280 has a best-in-class response time of just one second for humidity determination, excellent ambient temperature measurement and low energy consumption.

More precise measurement at lowest power consumption

With a small footprint of just 2.5 x 2.5 mm2and a height of 0.93 mm in a space-saving 8-pin LGA package, the sensor offers high design flexibility and is ideally suited for mobile devices with limited space such as smartphones, tablets, smart watches and electronic wristbands. Very low current consumption of only 3.6 µA (at 1 Hz) makes the BME280 Integrated Environmental Unit particularly suitable for battery-driven applications. Three power modes and separately configurable oversampling rates for pressure and temperature measurements allow designers to adapt the BME280 to a wide range of use cases.

The humidity sensor within the Integrated Environmental Unit measures relative humidity (0% to 100%) across a wide temperature range from -40°C to +85°C with a fast response time of less than 1 second. The humidity measurement accuracy is ±3% with a hysteresis of 2% or better, and the temperature reading accuracy is within 0.5°C.

more details on the Bosch Press Release.

BME680 measures pressure, humidity, temperature and indoor air quality

The BME680 measures pressure, humidity, temperature and indoor air quality. by Bosch Sensortec:

BME680 is an integrated environmental sensor developed specifically for mobile applications and wearables where size and low power consumption are key requirements. Expanding Bosch Sensortec’s existing family of environmental sensors, the BME680 integrates for the first time individual high linearity and high accuracy sensors for gas, pressure, humidity and temperature. It consists of an 8-pin metal-lid 3.0 x 3.0 x 0.95 mm³ LGA package which is designed for optimized consumption depending on the specific operating mode, long term stability and high EMC robustness.

BME680 measures pressure, humidity, temperature and indoor air quality – [Link]

Air Quality Sensors on tindie.com

Pesky Products @ tindie.com writes:

This is a small (17.9 mm x 10.3 mm) breakout board with Bosch’s BME280 pressure, temperature, and humidity sensor as well as AMS’ CCS811 digital gas sensor. The sensors work in concert to provide a complete measurement via I2C register reads of indoor air quality including temperature- and humidity-compensated estimates of equivalent CO2 concentration in parts per million (400 – 8192 ppm) and volatile organic chemical concentration in parts per billion (0 – 1187 ppb).

Air Quality Sensors on tindie.com – [Link]

Simple Pressure Sensor Amplifier & Over Pressure Switch

The pressure sensor amplifier built using LM358 op-amp and MPXM2051GS pressure sensor from NXP semiconductor.  The circuit provides 4V output for full scale pressure input 0-7.5PSI.  One op-amp is used as amplifier and 2nd op-amp is used as comparator to provide an output at set value that can be used as over pressure switch to control a pump or solenoid.  This is a low cost general-purpose circuit for those applications where +/-3% performance is acceptable. Multi turn potentiometers are provided for Offset, span adjust & over/under Pressure set point to control output devices like solid state relay, Pump, and solenoid.


  • Supply 12V DC
  • Pressure Sensor range 0-7.5PSI
  • Output 0-4V (Approx.)
  • PR1 Multi-Turn Potentiometer Offset
  • PR2 Multi-Turn Potentiometer Span Set
  • PR3 Multi-Turn Potentiometer Comparator (Switch) output Set
  • D1 Power LED
  • CN1 4 Header Connector Outputs & Supply Input

Simple Pressure Sensor Amplifier & Over Pressure Switch – [Link]

BMP380 – Ultra-miniature pressure sensor

Harry Baggen @ elektormagazine.com discuss about the new Bosch barometric pressure sensor BMP380.

At the CES, Bosch Sensortec unveiled the BMP380 barometric pressure sensor, the smallest and most accurate pressure sensor in their portfolio to date, with dimensions of 2x2x0.75 mm. The BMP380 is targeted at applications in drones, smartphones, tablets, wearables and other mobile devices for precise measurement of elevation changes.

BMP380 – Ultra-miniature pressure sensor – [Link]

Intel(r) Quark(tm) micrcontroller D2000 based Environmental sensors board

Sergey Kiselev designed and built an Intel Quark D2000 micrcontroller based Environmental sensors board:

This is a fairly small (51 x 51 mm) board, equipped with a low power Intel Quark D2000 microcontroller, and several sensors (accelerator, temperature, humidity, atmospheric pressure), as well as a mikroBUS compatible header and a Grove compatible connectors, that can be used to connect additional sensors, memory, or radio modules. The board can be used to monitor the environment conditions, and store or transmit the data to a remote system for further processing.

Intel(r) Quark(tm) micrcontroller D2000 based Environmental sensors board – [Link]

Pressure sensors need as little as 0.9 V


Susan Nordyk@ edn.com:

These micropower low-pressure sensors operate from a supply voltage of just 0.9 V to 1.8 V and are intended for use with noncorrosive, nonionic working fluids in such applications as medical devices and instrumentation, environmental controls, HVAC equipment, and portable devices.

Pressure sensors need as little as 0.9 V – [Link]

Pressure, temperature and humidity sensor board with RS485


Mare shares his sensor board based on MS5637 HDC108. He writes:

This is another small module to measure air pressure, temperature and humidity. Two sensors are on-board: MS5637 and HDC1080. Microcontroller is small cortex M0 in TSSOP-20 housing from STM: STM32F070CxP. The SN65HVD72DGKR provides RS485 interface functionality with half duplex mode. Voltage regulator, reverse polarity protection and some LED indicators are provided on-board. Complete module is 10x55mm, produced on single-sided PCB, easily producible in every home lab with proto-PCB capability.

Pressure, temperature and humidity sensor board with RS485 – [Link]

LED Weather Forecast using Raspberry Pi


AughtNaughtZero @ instructables.com posted his latest project, a LED matrix visualizing data from a weather website such as temperature, pressure, humidity, wind speed etc.

This project utilizes a 6 x 16 matrix of RGB LEDs to visualize a weather forecast pulled from the Weather Underground API. A Raspberry Pi runs a python program designed to fetch weather forecast data from the API at regular intervals, parse the data into temperature, pressure, humidity, wind speed, chance of precipitation, and weather condition arrays, and then colorize and display that data across the LED matrix.

LED Weather Forecast using Raspberry Pi – [Link]