Tag Archives: Processor

Researchers Innovated Highly Effective Silicon Microchannel Thermal coolers For Processors

One of the limiting factors for the computing power of processors is the operating temperature. A research team led by Dr. Wolfram Steller, Dr. Hermann Oppermann, and Dr. Jessika Kleff from the Fraunhofer Institute for Reliability and Microintegration IZM, has developed a new as well as an efficient cooling method by integrating microchannels into the silicon interposer. For the first time, it is possible to cool down high-performance processors from the bottom as well.

The integration of microchannels into the silicon interposer
The integration of microchannels into the silicon interposer boosts cooling and processor performance

When processors get too hot to work properly, they reduce their clock speed and operating voltage. In order to protect the CPU and motherboard from getting fried, the processors either reduce their computing speed or even shut off completely. Until now, cooling elements and fans are used to avoid overheating the heat-sensitive components. The researchers found a way to cool processors from the top as well as from below using a liquid-based cooling system.

The research team reports that the innovation can achieve a significant increase in performance. The scientists have also integrated passive elements for voltage regulators, photonic ICs, and optical waveguides into the interposer. This enables highly effective cooling and therefore higher performance. For this purpose, microchannel structures with tightly sealed vias are installed in the silicon interposer, which is located between the processor and the printed circuit board.

Interposers are responsible for the electrical supply and cooling of the processor. Every 200 micrometers, interposers are equipped with electrical connections to ensure the processor’s power supply and data transmission. In order to be able to absorb heat and channel it away from the processor, the researchers at Fraunhofer IZM created microfluid channels that allow coolant to be circulated through vias.

The main challenge to the researchers was to integrate the small channels into the interposer and seal them very tightly in order to separate them from the electrical paths. The solution they came up with is interesting – the interposer is made of two silicon plates – horizontally extending cooling channels and vertically extending channels. They are combined in a complementary manner.

Dr. Hermann Oppermann, the group leader at Fraunhofer IZM, said,

Up to now, the cooling structures are not very close to the computer core itself, which means the coolers are mostly applied from above. The closer you get to the heat source, the better the temperature can be limited or the output increased. In high-performance computing, in particular, the data rates are continuously increasing. Therefore, it is important to have an effective cooling to ensure a higher clock rate.

Open source 25-core processor can be stringed into a 200,000-core computer

index

Researchers at Princeton University have built a 25-core chip that can scaled easily to create a 200,000-core computer. by Agam Shah @ pcworld.com:

It won’t happen anytime soon, but that’s one possible usage scenario for Piton. The chip is designed to be flexible and quickly scalable, and will have to ensure the giant collection of cores are in sync when processing applications in parallel.

Open source 25-core processor can be stringed into a 200,000-core computer – [Link]

What Will Happen to Moore’s Law in 2021?

Moore’s law states that the number of transistors doubles every two years. Rachel Courtland from IEEE Spectrum explained the sharp turn of Moore’s law in 2021.

Moore2021Chip manufactures will switch to another way of boosting the density in the chip by having multilayer chips using vertical geometry, and we’ve already seen the 3D concept in silicon chips like 3D NAND Flash. According to 2015 roadmap released by International Technology Roadmap for Semiconductors (ITRS), by 2021, shrinking the dimensions of transistors in microprocessors will not be desired economically by chip makers, although the report of 2014 predicted that the physical dimensions would continue to shrink until at least 2028.

According to the article, the spirit of Moore’s Law could still there, where some changes in the technologies will still lead to pack more transistors in a given area.

Rachel also mentioned  that first international Rebooting Computing conference will be held in October this year 2016. It’s “Other ITRS participants are expected to continue on with a new roadmapping effort under a new name” Rachel said.

[Article on IEEE Spectrum]

Open-source microprocessor

2-opensourcemi

Fabio Bergamin @ phys.org writes about PULPino which is an open source processor to be used on wearables and IoT.

In future, it will be easier and cheaper for developers at universities and SMEs to build wearable microelectronic devices and chips for the internet of things, thanks to the PULPino open-source processor, which has been developed at ETH Zurich and the University of Bologna.

Open-source microprocessor – [Link]

Six boards for rapid IoT development

35980-CON-WaRP7-CPU-stacked-HAND-SHOT-v1_TWS-960x425

Robert Thompson @ nxp.com blog discuss about six IoT developement boards that are good start points on the field.

Established companies and emerging start-ups are putting a stake in the Internet of Things ground, an opportunity with estimates of 50 billion devices connected by 2020.

Standing in the way for many companies is the increasing complexity of technology inside connected devices. Shortened design cycles further fuel pressure felt by designers — the shelf-life of an IoT device is similar to a smart phone, from 12 to 18 months. If your new or updated product isn’t first out the door, another product will take its place.

Six boards for rapid IoT development – [Link]

OSHChip – general purpose processor board in DIP format

OSHChip_Black_on_breadboard

OSHChip is a general purpose processor board based on ARM Cortex-M0 32 bit processor running at 16 MHz. It includes 2.4 GHz Bluetooth Low Energy radio and a broad range of built-in Peripherals. It features 256 KBytes of Flash memory for program and data and 32 KBytes of SRAM. All this functionality comes in a tiny DIP like package which is compatible with a breadboard thus making prototyping an easy task. OSHChip is an open source project and all design files are available on github: https://github.com/OSHChip/OSHChip_V1.0_Docs

OSHChip – general purpose processor board in DIP format – [Link]

Reverse engineering the silicon in the ARM1 processor

chip-labeled-bit

righto.com has reverse enginnered one of the most popular proccessors:

How can you count bits in hardware? In this article, I reverse-engineer the circuit used by the ARM1 processor to count the number of set bits in a 16-bit field, showing how individual transistors form multiplexers, which are combined into adders, and finally form the bit counter. The ARM1 is the ancestor of the processor in most cell phones, so you may have a descendent of this circuit in your pocket.

Reverse engineering the silicon in the ARM1 processor – [Link]