Tag Archives: Sensor

IDT Announces High Performance MEMS Relative Humidity & Temperature Sensor

California based company, Integrated Device Technology (IDT) has recently announced their new HS300x family of MEMS high-performance relative humidity (RH) and temperature sensors of dimension 3.0 × 2.41 × 0.8 mm DFN-style 6-pin LGA. Currently, there are four devices in this family—the HS3001, HS3002, HS3003, and HS3004. They are all the same from the view of functionality but differ slightly in terms of the accuracy of their relative humidity and temperature measurements.

Development board for ITD MEMs sensors

The highlighted feature of this new lineup is that they do not require any user calibration. HS300x family of ICs has calibration and compensation logic integrated into the devices. These ICs output their fully corrected data using standard I2C protocols making the measured data from the sensors is rather easy.

As a side note, Relative humidity (RH) is the ratio of the partial pressure of water vapor to the equilibrium vapor pressure of water at a given temperature. As the entire output consists of only four bytes of data, calculating the corresponding relative humidity in percent and temperature in degrees Celsius is very easy.

Although the HS300x sensors operate as slave devices on the I2C bus (supporting clock frequencies from 100 kHz to 400 kHz), only one HS300x IC can be connected directly to a single I2C bus. To connect multiple sensors to a single I2C bus, an I2C multiplexer/switch has to be used. It would have been easier if IDT had dedicated the unused pin as an optional I2C address input bit, which would allow two HS300x devices to be connected to a single I2C bus.

If you’re interested in testing these ICs prior to incorporating them into a design, SDAH01 or SDAH02 evaluation kit can come handy. Although both kits utilize the HS3001 sensor, the SDAH01 kit outputs the measured data to a PC while the SDAH02 displays the data on an LCD screen.

Researchers Of RMIT University Develops Swalloable Gas Sensors That Can Improve Your Diet

Researchers led by Kourosh Kalantar-Zadeh, at RMIT University in Melbourne, Australia have developed the first intestinal gas-diagnosing pill to be tested in human. During the study, which was published on January 8 in Nature Electronics, the swallowable gas sensors were tested in seven healthy participants who ate low and high-fiber diets.

Swallowable gas sensors can improve your diet
Swallowable gas sensors can improve your diet

This ‘smart’ capsule is capable of measuring levels of Oxygen, Hydrogen, and Carbon dioxide as it travels through the intestines of human beings. It sends the data in real-time to a device like a smartphone. This electronic pill can shape custom diets for optimal stomach health. Also, it can help doctors to distinguish between the early signs of different Gastrointestinal disorders, such as malabsorption syndrome, Crohn’s disease, colitis, irritable bowel syndrome, and even colon cancer.

On its surface, the gas capsule looks like a swallowable capsule with the outer most layer made of polyethylene. But within its inch-long shell, there are two gas sensors, a temperature sensor, a microcontroller, a radio-frequency transmitter, and button-sized silver-oxide batteries. The gas sensors are sealed within a specialized membrane that allows gas in but completely keeps stomach acid and digestive juices out.

It determines gas profiles in the stomach by controlling the heating elements of the sensors. Since oxygen, hydrogen, and carbon dioxide all have heat conductivity, the sensors can accurately determine the levels of these gases by taking measurements at multiple temperature points.

The levels of oxygen-containing molecules picked up by the sensors told the researchers where the pill was located within the stomach. That’s because Oxygen concentrations drop over the journey of the 30-foot long digestive tract. The stomach is very oxygen-rich while the colon is nearly anaerobic. Kalantar-Zadeh and his team confirmed the accuracy of this results by imaging the pills directly with ultrasound.

Using an algorithm, the information coming from the sensors is processed and then the signal is relayed in real-time to a small receiver that has a range of up to 100 feet. The receiver can store or transmit the data via Bluetooth to a smartphone, which can post the data online for easy monitoring by users and doctors.

This trial not only revealed the safety and effectiveness of a swallowable sensor — it revealed something remarkable about the stomach itself as well.

Sensirion Presents Pressure-Resistant Mass Flow Meter

The SFM4200 mass flow meter is a new star in the Sensirion range. Thanks to its high pressure resistance, it can be operated at pressures of up to 8 bar and measures flow rates up to 160 slm with a rapid signal processing time of 0.5 ms. It is particularly suitable for gas mixing in medical applications.

Sensirion is one of the leading manufacturers of innovative sensors and sensor solutions that millions of people rely on every day. With the launch of the SFM4200 digital mass flow meter, Sensirion has once again underscored its commitment to innovation. The SF4200, which measures air, oxygen and other non-corrosive gases with an outstanding level of accuracy, is pressure-resistant than its predecessors and can be operated up to 8 bar pressure, while delivering reliable and precise measurements. With a signal processing time of 0.5 ms, the sensor is incredibly fast, as well as highly accurate. Its pressure resistance makes it ideally suited to high-volume medical applications such as oxygen gas mixing in respiratory applications, where the sensor is integrated into the high-pressure side. Customers can therefore install the SFM4200 flexibly, allowing them to use it to significantly develop their own products or to transform the design. (more…)

Talking Pi is a Voice Control Module for The Raspberry Pi

Voice is the most simple and powerful medium. Everyone has it and it is the most personal way to convey our thoughts, messages, instruction, ideas, and questions. We have seen the rise of Voice Assistants like Alexa and Google Home; where someone can control things with only voice commands.

Talking Pi Module from JOY-iT

Mid 2017, Google released the Voice Kit – a voice recognition kit for the raspberry that makes it possible to add voice to any Raspberry Pi based projects. JOY-iT has released the Talking Pi, an intelligent, universal open source voice control assistant for the Raspberry Pi.

Talking Pi made by JOY-iT is a voice control module designed for the Raspberry Pi that will allow one to use voice commands to control home lighting devices, talk to machines, activate power outlets and so much more. Talking Pi gives you the possibility to add voice assistant to your raspberry pi.

Apart from taking Voice Commands, Talking Pi is equipped with some extra add-ons that could enhance the functionality of a Raspberry Pi at no extra cost. It is equipped with a bracket holding 433-MHz radio modules and an integrated motor control. With the radio module addition, you could possibly use your voice to remotely control objects – like switch on/off the bedroom lights, pilot your drone with only voice, pilot your RC car with voice commands and many more. The Talking Pi provides support for both the 433MHz radio sending and receiving unit, so not only can one send out you can also receive.

Talking Pi Pin Mappings

Talking Pi provides support for servo PWM control with a total of six addressable channels. The six-channel servo PWM can be used to control several robot’s motors and even make a complete six degree of freedom robotic arm. Furthermore, it is possible to address devices and circuits via the GPIO interface of the Raspberry Pi. The Talking Pi expansion module is also compatible with Google Home and the AIY project.

Measured at 64 x 10 x 54mm, the module will be ideal for size-sensitive applications. The module includes a stereo microphone added through an extra additional board and its integrated I2S sound output driver allows connection for a 3-watt loudspeaker.

Talking Pi plugged to the Raspberry Pi

This module is available and currently being marketed by Conrad Business supplies. The module is available for purchase on Elektor at a price of $42 and reduced price of $38 for its members. For more information about using the Talking Pi in your Raspberry Pi project, you can download the documentation pdf here.

3 in 1 Temperature Sensor Shield For Arduino Nano

This 3 in 1  shield for Arduino Nano helps to develop various temperature measuring applications. Arduino Nano shield consists of 3 different types of temperature sensors.

  1. MLX90614 non-contact temperature sensor
  2. 10K NTC Analogue Temperature Sensor
  3. Programmable Resolution 1-Wire Digital Thermometer

With this board is easy to make a contactless temperature meter using the earlier published 4 Digit display Nano shield,

Note : Only MLX90614 sensor can be used with display shield , DS18200 and NTC has to be removed as display uses those port pins.

3 in 1 Temperature Sensor Shield For Arduino Nano – [Link]

Raspberry Pi Clock with Temperature

A Raspberry Pi clock with outside temperature display using OpenWeatherMap and inside temperature display using a MCP9808 sensor. By Jeremiah Mattison

This project is for a building a digital clock that includes temperature display. It uses OpenWeatherMap to retrieve outside temperature information and a MCP9808 sensor for inside temperature.

Raspberry Pi Clock with Temperature – [Link]

Omron’s New Super-Sensitive, Non-Contact MEMS Temp Sensor

There’s a new addition to the Omron thermal sensor family. The D6T-1A-02 is the latest in sensory innovation with super-sensitive, infra-red (IR), non-contact temperature sensing capabilities using MEMS technology.

The Omron D6T thermal sensor is ideal for building automation applications, measuring the temperature in a room, or detecting occupancy, even when people are stationary. Additionally, because the D6T is fully non-contact it offers a wider detection range, as well as ultra-sensitive heat sensors – an excellent alternative to PIR detectors and pyroelectric sensors.

Making full use of MEMS technology, the D6T includes:

  • The ability to measure surface temps anywhere between -40° to 80°C (-40°-176°F) with an accuracy of +/- 1.5°C, and resolution of 0.06°.
  • A state-of-the-art MEMS thermopile, a sensor ASIC (Application Specific Integrated Circuit), and a signal processing microprocessor in a 12.0mm x 11.6mm x 9.2mm package.
  • A narrow field of view at 26.52, which allows for accurate readings of a specific object within range.

[via]

Omron’s New Super-Sensitive, Non-Contact MEMS Temp Sensor – [Link]

Researchers Develop Transparent Flexible Terahertz Sensors With Graphene

The researchers of the Swedish Chalmers University of Technology have developed a new design of terahertz sensor using Graphene. This flexible sensor can be integrated into wearable materials. Most importantly, it can be manufactured very cheaply and also it is practically transparent. This new type of sensor could be a major breakthrough by opening doors of many new applications.

Flexible Graphene sensor by Chalmers University
Flexible Graphene sensor by Chalmers University

The terahertz frequency band ranges from 100 to 10,000 GHz. Terahertz radiation is able to penetrate materials that block visible and mid-infrared light. This technology opened up a range of potential applications in medical diagnostics, process control, and even intelligent vehicles. Jan Stake, the head of the Terahertz and Millimetre Wave Laboratory at Chalmers, said,

Terahertz graphene-based FET detectors have been demonstrated on rigid substrates such as SiO2/Silicon, and flexible devices such as graphene and other concepts have been demonstrated at RF/microwave frequencies.

This band is also used by the so-called “nude-scanners” used at airport check-in desks to look for illegal items carried by passengers. THz waves penetrate normal clothing hence it can detect weapons made of plastic. As Non-metallic weapons cannot be detected by ordinary metal detectors used at the entry gates and by hand-held scanners. Thus these new inexpensive sensors can enhance security for everyone.

Terahertz transmissions have enormous bandwidth available. THz signals can be used as carriers for high-speed information links over short distances allowing data speeds up to 100 Gb/s. On the other hand, THz waves allow uninterrupted visibility in fog or rain for motorized vehicles.

There are many medical applications of the technology using sensors that are cheap to produce and are physically small. One important example is in the field of dermatology. Skin regions affected by cancer have a different reflective index to THz waves which makes the sensor a useful diagnostic tool.

Although being under development for a long time, conventional THz sensors were always large and expensive. With this new design, the Swedish research team has enabled the tech world with mass production of the sensors. New sensors will be small, flexible and cost-effective. Development of the sensors was funded by the European Union under the Graphene Flagship Initiative.

What the Chalmers team has done to combine flexibility and terahertz detection could also make it possible to build an Internet of Things connected via high-bandwidth 5G technologies.

Sensirion presents CO2 and RH/T Sensor Module

At this year’s AHR Expo 2018 trade show in Chicago (January 22 – 24, 2018), Sensirion, the expert in environmental and flow sensor solutions, is introducing the SCD30 – a humidity, temperature and carbon dioxide concentration sensor.

CMOSens® Technology for IR detection enables highly accurate carbon dioxide measurement at a competitive price. Along with the NDIR measurement technology for CO2 detection, a best-in-class Sensirion humidity and temperature sensor is also integrated on the same sensor module. Ambient humidity and temperature can be outputted by Sensirion’s algorithm expertise through modeling and compensating of external heat sources without the requirement for any additional components. Thanks to the dual-channel principle for the measurement of carbon dioxide concentration, the sensor compensates for long-term drifts automatically by design. The very small module height allows easy integration into different applications.

Carbon dioxide is a key indicator of indoor air quality. Thanks to new energy standards and better insulation, houses have become increasingly energy efficient, but the air quality can deteriorate rapidly. Active ventilation is needed to maintain a comfortable and healthy indoor environment, and to improve the well-being and productivity of the inhabitants. Sensirion’s SCD30 offers accurate and stable CO2, temperature and humidity monitoring. This enables customers to develop new solutions that increase energy efficiency and simultaneously support well-being. With the new SCD30, Sensirion has expanded its portfolio to include environmental sensor for air quality measurement.

Visit Sensirion at AHR Expo 2018 (Booth 3858) and learn more about the SCD30, Sensirion’s new humidity, temperature and carbon dioxide sensor module.

Discover more about relevant environmental parameters and Sensirion’s other innovative environmental sensors at www.sensirion.com/environmental-sensing

Micro-spectrometer Sensor Will Let You Check Air Quality Or Blood Sugar – Using Smartphone

Now you can use your smartphone to check how clean the air is, measure the freshness of food or even the level of your blood sugar. This has never been so easy. All credit goes to the new spectrometer sensor which is developed at the Eindhoven University of Technology and can be easily attached to a mobile phone. The little sensor is just as precise as the normal tabletop models used in scientific labs. The researchers published their invention on 20th December in the popular journal Nature Communications.

The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle
Spectrometer sensor construction: The blue perforated slab is the upper membrane, with the photonic crystal cavity in the middle

Spectrometry is the analysis of the light spectrum. It has an enormous range of applications. Every organic and inorganic substance has its own unique ‘footprint‘ in terms of light absorption and reflection. Thus it can be recognized by spectrometry. But precise spectrometers are bulky and costly since they split up the light into different colors (frequencies), which are then measured separately.

The intelligent sensor developed by Eindhoven researchers is able to make such accurate measurements in an entirely different way. It uses a special photonic crystal cavity that acts as a ‘trap’ of just a few micrometers into which the light falls and cannot escape. This trap is situated in a membrane. In the membrane, the captured light generates a tiny electrical current which can be measured accurately. The accurate working cavity design is made by Žarko Zobenica, a doctoral candidate.

The sensor can measure only a narrow range of light frequencies. To increase the frequency range, the researchers placed two of these membranes above each other closely. The two membranes affect each other. Changing the separation gap between them by a tiny amount also changes the light frequency that the sensor recognizes. To understand this the researchers, supervised by professor Andrea Fiore and associate professor Rob van der Heijden, included a MEMS or micro-electromechanical system.

This mechanism can change the measured frequency by changing the separation between the membranes. In this way, the sensor is able to cover a range of about thirty nanometers. Within which the spectrometer can recognize some hundred thousand frequencies with an exceptional precision. The research team demonstrated several applications like an extremely precise motion sensor and a gas sensor. All made possible by the clever use of the tiny membranes.

As per Professor Fiore‘s expectations, it will take another five years or more before the new spectrometer actually gets into a Smartphone. The main difficulty at this moment is the frequency range covered is still too small. It covers only a few percent of the most common spectrum, the near-infrared.

Given the huge potential and the wide field of applications, micro-spectrometers can become just as important as the camera in the smartphones of future.

By continuing to use the site, you agree to the use of cookies. more info

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close