Tag Archives: sensors

SprintIR6S, World’s Fastest NDIR CO2 Sensor

Gas Sensing Solutions (GSS) Ltd is a designer and manufacturer of low power, high speed Non-Dispersive Infrared (NDIR) carbon dioxide gas sensors. Recently, it has claimed a new speed record for its SprintIR6S NDIR CO2 sensor.

The new sensor comes with response rates that had never been reached before by any other NDIR CO2 sensors. It can take up to 20 readings per second, and has a six-times faster response rate than the current SprintIR.

According to Ralph Weir, GSS’ CEO, the sensor uses LEDs and photodiodes to measure differential light absorption between light at 4.2 and 4.4 μm. So, they succeeded to develop ultra-speed sensor, while other detectors take several seconds or even minutes to take a reading.

“Our LEDs, by contrast, are Solid State emitters, and illuminate almost instantly. With the new SprintIR6S, we’ve also minimised the sample volume down to only 2ml, which enables us to achieve our fastest ever response rates.”
~ Ralph Weir

The SprintIR6S is less than a cubic inch in dimension with 23.8mm in diameter and 24mm tall. It operates at a range between 3.25V and 5.5V and consumes only 35mW. SprintIR6S is also available in measurements ranges from 0% to 100%.

Main Specifications of SprintIR6S

  • Warm-up Time: < 30 seconds
  • Operating Conditions:
    • 0°C to 50°C (Standard)
    • 0 to 95% RH, non-condensing
  • Recommended Storage: -30°C to +70°C
  • Sensing Method:
    • Non-dispersive infrared (NDIR) absorption
    • Patented Gold-plated optics
    • Solid-state source and detector
  • Sample Method: Flow through
  • Measurement Range: 0-5%, 0-20%, 0-100%
  • Accuracy: ±70 ppm +/- 5% of reading (100% Range ±300 ppm +/-5% of reading)
  • Non Linearity: < 1% of FS
  • Pressure Dependence: 0.13% of reading per mm Hg in normal atmospheric conditions
  • Operating Pressure Range: Atmospheric pressure range. Lower and higher pressures require more advanced pressure compensation.
  • Response Time: Flow Rate Dependent – see graph below. Response time also depends on user configurable digital filter settings.
  • Power Input:
    • 3.25 to 5.5V. (3.3V recommended).
    • Peak Current 33mA.
    • Average Current <12mA.

Applications of SprintIR6S are those which require capture of rapidly changing CO2 concentrations. Such as capnography, fitness testing, metabolic assessment, sports science, veterinary medicine, bio-medical, and incubators.

For more information and detailed specification, you can download the datasheet, or contact GSS to order or for more information.

Raspberry Pi ATX Power Board

Control 16 Relays with your Pi, supplying 12V to 16 DC jacks. All powered from and ATX Power Supply, with sensor support on board. You can find more details on the author’s website. by Rodney Balent @ kickstarter.com:

I started out with the simple goal of wanting to automate a few things around the home starting with my vertical garden using a Raspberry Pi.

With that goal in mind I decided to make a 16 bay relay board so I could control as many devices as possible from a single point. It was then I found how much space this would take up, and how long it would take to wire up and it became impractical.

So the next logical step was to look into making my own PCB. I noticed that virtually all the devices I wanted to control ran on 12V, I also noticed how many spare ATX power supplies I had lying around and the gears in my head started turning.

Bluey, BLE Development Board Supports NFC

Development boards are assistant tools that help engineers and enthusiasts to become familiarized with hardware development. They simplify the process of controlling and programming hardware, such as microcontrollers and microprocessors.

Electronut Labs, an embedded systems consulting company, had produced its new BLE development board “Bluey” with a set of useful sensors and NFC support.

Bluey is an open source board that features the Nordic nRF52832 SoC which supports BLE and other proprietary wireless protocols. Bluey has built-in sensors that include temperature, humidity, ambient light and accelerometer sensors. Also, it supports NFC and comes with a built-in NFC PCB antenna.

The nRF52832 SoC is a powerful, ultra-low power multiprotocol SoC suited for Bluetooth Low Energy, ANT and 2.4GHz ultra low-power wireless applications. It is built around a 32-bit ARM Cortex™-M4F CPU with 512kB + 64kB RAM.

Bluey Specifications:

  • Nordic nRF52832 QFAA BLE SoC (512k Flash / 64k RAM)
  • TI HDC1010 Temperature/Humidity sensor
  • APDS-9300-020 ambient light sensor
  • ST Micro LSM6DS3 accelerometer
  • CREE RGB LED
  • CP2104 USB interface
  • 2 push buttons
  • Coin cell holder
  • Micro SD slot
  • 2.4 GHz PCB antenna
  • NFC PCB antenna

Bluey can be programmed using the Nordic nRF5 SDK. You can upload the code with an external programmer such as the Nordic nRF52-DK, or the Black Magic Probe firmware on STM32F103 breakout. But, within the built-in OTA (over the air) bootloader, you can upload the code directly using a PC or a phone.

The sensors on the board require a minimum of 2.7 volts to function properly, and the maximum power is 6 volts. Bluey’s design offers three different ways to power it, all of them have a polarity protection:

  1. Using the 5V micro USB connector (which also gives you the option to print debug messages via UART).
  2. The + / – power supply pins which can take regular 2.54 mm header pins, a JST connector for a 3.7 V LiPo battery, or a 3.5 mm terminal block.
  3. A CR2032 coin cell for low power applications.

You can use Bluey for a wide range of projects. The BLE part is ideal for IoT projects, or if you want to control something with your phone. The nRF52832 SoC has a powerful ARM Cortex-M4F CPU, so you can use this board for general purpose microcontroller projects as well.

Bluey is available for $29 for international customers from Tindie store. Indian customers can purchase it from Instamojo store. There are also discounts for bulk purchases. For more information about the board visit its github repository, where you will find a full guide to start and a bunch of demo projects.

SYNTHETIC SENSORS, All-In-One Smart Home Sensor

In the era of Internet of Things, we wanted most of our home appliances to become smart. But currently, smart devices may cost much more than their offline counterparts and they often do not communicate with each other. Trying to overcome these limitations, A Ph.D student invented a way to turn entire rooms into smart with a single low-cost device called “Synthetic Sensors“.

Gierad Laput, is a Ph.D. student of computer-human interaction at Carnegie Mellon University. His research program explores novel sensing technologies for mobile and wearable computing, smart environments, and the Internet of Things.

Synthetic Sensor is a general purpose sensor that is powered directly from a wall socket and tracks ambient environmental data to monitor an entire room. It removes the need to attach additional hardware to each of home appliances.

We explore the notion of general-purpose sensing, wherein a single, highly capable sensor can indirectly monitor a large context, without direct instrumentation of objects. Further, through what we call Synthetic Sensors, we can virtualize raw sensor data into actionable feeds, whilst simultaneously mitigating immediate privacy issues. We use a series of structured, formative studies to inform the development of new sensor hardware and accompanying information architecture. We deployed our system across many months and environments, the results of which show the versatility, accuracy and potential of this approach.

The device uses machine learning to recognize the events that happen in the room, like recognizing a particular sound pattern as taking a paper towel, but it cannot monitor when the roll may need to be changed. However, by using a “second order” sensors, the devices can capture counts and send notifications of the need to replenish. This capability can be scaled to an unlimited degree giving consumers highly specific and applicable feedback.

Developers can use the recognized events as triggers for other IoT applications. For example, one could use “left faucet on” to activate a room’s left paper towel dispenser and automatically schedule a restock when its supply runs low.

The Synthetic Sensor is still in prototyping phase, you can learn more about it by visiting its website and read the research paper. Watch this video to see Synthetic Sensors in action:

Fast Single-Pixel Camera

Compressed sensing is an new computational technique to extract large amounts of information from a signal. Researchers from Rice University, for example, have built a camera that can generate 2D-images using only a single light sensor (‘pixel’) instead of the millions of pixels in the sensor of a conventional camera.

This compressed sensing technology is rather inefficient for forming images: such a single-pixel camera needs to take thousands of pictures to produce a single, reasonably sharp image. Researchers from the MIT Media Lab however, have developed a new technique that makes image acquisition using compressed sensing fifty times more efficient. In the example of the single-pixel camera that means that the number of exposures can be reduces to several tens.

One intriguing aspect of compressed sensing is that no lens is required – again in contrast with a conventional camera. That makes this technique also particularly interesting for applications at wavelengths outside of the visible spectrum.

In compressed sensing, use is made of the time differences between the reflected light waves from the object to be imaged. In addition, the light that strikes the sensor has a pattern – as if it passed through a checkerboard with irregular positioned transparent and opaque fields. This could be obtained with a filter or using a micro-mirror array where some mirrors are directed towards the sensor and others are not.

The sensor each time measures only the cumulative intensity of the incoming light. But when this measurement is repeated often enough, each time with a different pattern, then the software can derive the intensity of the light that is reflected from different points of the subject.

Source: Elektor

3D Printed Organ-On-Chip

Researcher at Harvard University had been working to build new microphysiological systems (MPS), also known as organs-on-chips, that can mimic the operation of the structure and function of native tissue.

By developing such systems, they are replacing the conventional way of measuring and testing synthetic organs -usually by testing them first on animals.

organonchip

Although such a solution can help in advancing research and making easy organ-replacement real, but it also somehow costly and considered as laborious.

To build up this system you need a clean room and you have to use a complex, multistep lithographic process. To collect data you also need microscopy or high-speed cameras. Considering also the fact that current MPS typically lack integrated sensors, researchers developed six different inks that integrated soft strain sensors within the micro-architecture of the tissue.

09/15/2016 Cambridge, MA. Harvard University. This images shows multi-material, direct write 3D printing of a cardiac microphysiological device. This instrument was designed for in vitro cardiac tissue research. Lori K. Sanders/Harvard University
This images shows multi-material, direct write 3D printing of a cardiac microphysiological device. This instrument was designed for in vitro cardiac tissue research. Lori K. Sanders/Harvard University

They combined all the steps in one automated procedure using 3D printer. The result was  a cardiac microphysiological device — a heart on a chip — with integrated sensors.  According to the research paper, these 6 inks were designed based on “piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues”

“We are pushing the boundaries of three-dimensional printing by developing and integrating multiple functional materials within printed devices,” said Jennifer Lewis, Hansjorg Wyss Professor of Biologically Inspired Engineering. “This study is a powerful demonstration of how our platform can be used to create fully functional, instrumented chips for drug screening and disease modeling.”

You can check this video to see this heart in action, and to take a look at the 6 inks 3D printer

Right now, researchers are testing their new heart-on-chip by performing drug studies and longer-term studies of gradual changes in the contractile stress of engineered cardiac tissues, which can take multiple weeks. This approach will make it much easier to test and measure the tissue contractile and its response to various chemicals like drugs and toxins.

This work was published in Nature Materials and the research was named “Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing”.It was supported by the National Science Foundation, the National Center for Advancing Translational Sciences of the National Institutes of Health, the US Army Research Laboratory and the US Army Research, and the Harvard University Materials Research Science and Engineering Center (MRSEC).  For more information, you can check the paper out here and learn more at Harvard website.

Marvin, A Plug & Play IoT Development Board

Internet of Things became one of the most important technology trends nowadays, and everyday we have a new board or tool that helps people to create IoT application. Today, we introduce you to “Marvin”, a new IoT board developed at RDM Makerspace.

Marvin in his natural habitat of sensors, cables and power
Marvin in his natural habitat of sensors, cables and power

Marvin is an easy to use, plug and play development board for rapid prototyping of IoT solutions with a full size USB port. It is compatible with the open source Arduino platform and works with LoRa communication on LoRa networks.

The board is designed as a USB stick, so you can program it directly into your computer, and once you are done you can plug it into a power bank easily without having to bother with any cables in the process. Marvin is based on the Microchip RN2483 as a LoRa module with 868 & 434 MHz frequency bands, so you can use it anywhere outdoor in Netherlands, and other countries.

bfcf039917ec49a4c69fcd6afc020f2e_original

Marvin is also compatible with Grove System, modular, ready-to-use tool sets. Similar to LEGO, it takes a building block approach to assembling electronics. The Grove system consists of a base shield and various modules with standardized connectors. A wide range of Grove modules are available for use within the Grove System.

LoRa, stands for Long Range Low Power, appears to be one of the most popular LPWAN standards. It is a very efficient, light weight way of communicating small messages wireless. The LoRa module is a hardware chip, that is most of the time sleeping, which means you save loads of power.

Advantages of the LoRa Network
Advantages of the LoRa Network

Marvin board specifications:

  • MCU – Atmel/Microchip ATmega32u AVR MCU (same as Arduino Leonardo board)
  • Connectivity – LoRa via Microchip RN2483; Supports both 868 MHz and 433 MHz frequency bands, on-board antenna
  • USB – 1x USB, 1x micro USB port for power and programming
  • Debugging – USB, and ISP header
  • Expansion – 5x Grove connectors
  • Power Supply – 5V via USB port
  • Dimensions – N/A, but similar to USB flash drive

There are five steps to create an IoT project, first connect Marvin to your PC and add sensors, then write your code and upload it to Marvin, finally connect to the power source and enjoy testing your project.

b4ebcc80ee4eb6e5fdbdf83d511fd478_original

The project has been recently launched on kickstarter, and the developers had surpassed their €10,000 funding target with close to €16,000 raised so far. Ordering Marvin is available for €70 through the campaign page with many other offers.

36$ Complete Sensor-to-Cloud Inspiration Kit

Silicon Labs, the leader in energy-friendly solutions for a smarter, more connected world, has been constantly making silicon, software and tools to help engineers transform industries and improve lives since 1996.

Silicon Labs has just launched its newest development platform, The Thunderboard Sense Kit. Thunderboard Sense is a small and feature packed development platform for battery operated IoT applications. It is partnered with a mobile app that seamlessly connects Thunderboard Sense to a real time cloud database.

1014288180

batterybuttons-81756b55c133b9dacd11a7a0d1e897d5d7bf311e-s300-c85The mobile app enables a quick proof of concept of cloud connected sensors. The multi-protocol radio combined with a broad selection of on-board sensors, make the Thunderboard Sense an excellent platform to develop and prototype a wide range of battery powered IoT applications.

The 30 mm x 45 mm board includes these energy-friendly
components:

  • Silicon Labs EFR32 Mighty Gecko multiprotocol wireless SoC with a 2.4 GHz chip antenna, with an ARM Cortex-M4 core plus support for Bluetooth low energy, ZigBee, Thread and proprietary protocols
  • Silicon Labs EFM8 Sleepy Bee microcontroller enabling fine-grained power control
  • Silicon Labs Si7021 relative humidity and temperature sensor
  • Silicon Labs Si1133 UV index and ambient light sensor
  • Bosch Sensortec BMP280 barometric pressure sensor
  • Cambridge CCS811 indoor air quality gas sensor
  • InvenSense ICM-20648 6-axis inertial sensor
  • Knowles SPV1840 MEMS microphone
  • Four high-brightness RGB LEDs
  • Onboard Segger J-Link debugger for easy programming and debugging
  • USB Micro-B connector with virtual COM port and debug access
  • Mini Simplicity connector for access to energy profiling and wireless network debugging
  • 20 breakout pins for easy connection to external breadboard hardware
  • CR2032 coin cell battery connector and external battery connector

Onboard sensors measure data and transmit it wirelessly to the cloud. Thunderboard Sense comes with Silicon Labs’ ready-to-use cloud-connected IoT mobile apps, to collect and view real-time sensor data for cloud-based analytics and business intelligence.

thunderboard-sense-bubbles

“We’ve designed Thunderboard Sense to inspire developers to create innovative, end-to-end IoT solutions from sensor nodes to the cloud,” said Raman Sharma, Director of Silicon Labs’ IoT Developer Experience. “Thunderboard Sense helps developers make sense of everything in the IoT. They can move quickly from proof of concept to end product and develop a wide range of wireless sensing applications that leverage best-in-class cloud analytics software and business intelligence platforms.”

Check out the official intro video by Raman Sharma

To start using Thunderboard Sense you have to place your CR2032 battery in the right polarity, install the mobile app from Google Play or Apple store, find your board listed on the main screen of the app, and then you will be ready to explore the Thunderboard demos and start your own project! You can program Thunderboard Sense using the USB Micro-B cable and onboard J-Link debugger. You do not need RF design expertise to develop wireless sensor node applications.

Thunderboard Sense kit is available for $36 and you can buy it from here. All hardware, software and design files will be open and accessible for developers. You can visit Silicon Labs Github to download Thunderboard mobile app and cloud software source code.