Tag Archives: Silicon

Lasers built on silicon are a step towards fully integrated photonics

004709_10_fig1
image: spie.org

A group of researchers from the Cardiff University has demonstrated the first practical laser that has been grown directly on a silicon substrate. by Graham Prophet:

The lasing structure was formed in indium arsenide/gallium arsenide layers grown directly on a silicon substrate; the research group notes that previous work has involved wafer bonding techniques to merge electrical and optical (lasing) structures.

Lasers built on silicon are a step towards fully integrated photonics – [Link]

SiC/GaN Poised for Power

rcj_Yole_Power_Trasistors_SiC_GaN_1

by R. Colin Johnson @ eetimes.com:

PORTLAND, Ore.—Today Yole Development predicted that power transistors would radically shift from silicon wafers to silicon carbide (SiC) and gallium nitride (GaN) substrates—to achieve higher power in smaller spaces, according to its GaN and SiC Devices for Power Electronics Applications report.

One of the big drivers behind the shift is the electric vehicle (EV) and hybrid electric vehicle (HEV) industries, which Yole predicts will be majorly pushing the SiC technology to minimize the size of the power electronics using them.

SiC/GaN Poised for Power – [Link]

Large area industrial crystalline silicon n-PERT solar cell with a record 22.5 percent efficiency

1-largeareaind

@ phys.org:

Nano-electronics research center imec announced today at Intersolar Europe, a new efficiency record for its large area n-type PERT (passivated emitter, rear totally diffused) crystalline silicon (Cz-Si) solar cell, now reaching 22.5 percent (calibrated at ISE CalLab). It is the highest efficiency achieved for a two-side-contacted solar cell processed on six inch commercially available n-type Cz-Si wafers without the use of passivated contacts.

N-type silicon solar cells are considered as promising alternatives to p-type solar cells for next generation highly efficient solar cells thanks to their ability to withstand light-induced degradation and to their higher tolerance to common metal impurities.

Large area industrial crystalline silicon n-PERT solar cell with a record 22.5 percent efficiency – [Link]

First germanium-tin semiconductor laser directly compatible with silicon chips

germanium-tin-laser-2

by Colin Jeffrey @ gizmag.com:

Swiss scientists have created the first semiconductor laser consisting solely of elements of main group IV (the carbon group) on the periodic table. Simply, this means that the new device is directly compatible with other elements in that group – such as silicon, carbon, and lead – and so can be directly incorporated in a silicon chip as it is manufactured. This presents new possibilities for transmitting data around computer chips using light, which could result in potential transfer speeds exponentially faster than possible with copper wire and using only a fraction of the energy of today’s integrated circuits.

First germanium-tin semiconductor laser directly compatible with silicon chips – [Link]

Large area industrial crystalline silicon n-PERT solar cell with 22 percent efficiency

largeareaind

by Hanne Degans @ phys.org:

Nano-electronics research center imec announced today that it has improved its large area n-type PERT (passivated emitter, rear totally diffused) crystalline silicon (Si) solar cell on 6″ commercially available n-type Cz-Si wafers, now reaching a top conversion efficiency of 22.02 percent (calibrated at ISE CalLab). This is the highest efficiency achieved for this type of 2-side-contacted solar cell on an industrial large area wafer size.

Compared to p-type silicon solar cells, n-type cells do not suffer from light induced degradation and feature a higher tolerance to common metal impurities. As a result, n-type silicon solar cells are considered as promising alternatives to p-type solar cells for next generation highly efficient solar cells.

Large area industrial crystalline silicon n-PERT solar cell with 22 percent efficiency – [Link]

Smart chip mimics human brain functions

drone-and-chip

Amy Norcross @ edn.com:

HRL Laboratories, based in Malibu, CA, recently tested a prototype neuromorphic chip with 576 silicon neurons aboard a tiny drone measuring 6×6×1.5 inches and weighing 93 grams. The project was funded by the Defense Advanced Research Projects Agency (DARPA).

The drone, custom built for the test by AeroVironment of Monrovia, CA, flew between three separate rooms. The aircraft was able to process data from its optical, ultrasound, and infrared sensors and recognize when it was in a new or familiar room.

Smart chip mimics human brain functions – [Link]

Quick-change materials break the silicon speed limit for computers

quickchangem

by Phys.org:

Faster, smaller, greener computers, capable of processing information up to 1,000 times faster than currently available models, could be made possible by replacing silicon with materials that can switch back and forth between different electrical states.

The present size and speed limitations of computer processors and memory could be overcome by replacing silicon with ‘phase-change materials’ (PCMs), which are capable of reversibly switching between two structural phases with different electrical states – one crystalline and conducting and the other glassy and insulating – in billionths of a second.

Quick-change materials break the silicon speed limit for computers – [Link]

Sand-based anode triples lithium-ion battery performance

sand-lithium-ion-battery

By Darren Quick @ gizmag.com:

Conventional lithium-ion batteries rely on anodes made of graphite, but it is widely believed that the performance of this material has reached its zenith, prompting researchers to look at possible replacements. Much of the focus has been on nanoscale silicon, but it remains difficult to produce in large quantities and usually degrades quickly. Researchers at the University of California, Riverside have overcome these problems by developing a lithium-ion battery anode using sand.

Sand-based anode triples lithium-ion battery performance – [Link]