Tag Archives: SIP

Octavo Systems Releases OSD3358-SM-RED Beaglebone Black Compatible Board

Octavo Systems back in 2017 released their OSD335x-SM System-In-Package device, a powerful ARM Cortex®-A8 SIP-based package. The OSD335x-SM was a device of its class, measured at just 21mm x 21mm, and the OSD335x-SM is the smallest AM335x processor-based module on the market today that still allows complete access to all the AM335x device I/Os including PRUs. The OSD335x-SM helps in removing the need for DDR routing, power sequencing, complex supply chains and even the need for building larger PCBs to accommodate several components.

Octavo has announced the availability of the OSD3358-SM-RED platform.  The OSD3358-SM-RED platform is the official Reference, Evaluation, and Development platform for the OSD335x-SM SiP family. It is designed by Octavo Systems to allow users to evaluate the OSD335x-SM SiP for their application quickly.

The OSD3358-SM-RED is fully designed around the OSD335x-SM SiP at its core, thus inheriting all the features of the SiP device. The OSD335x-SM integrates a powerful 1GHz Texas Instruments Sitara AM335x processor, DDR3 Memory, two power supplies, and passives into a single easy to use package.  The 256 Ball BGA is 60% smaller than an equivalent design using discrete devices, making it the smallest ARM Cortex-A8 system implementation.

The development board comes included with a Gigabyte Ethernet (10/100/1000 Ethernet), a whopping 5 USB 2.o ports (comes with 4 USB hub ports and 1 micro USB client port), a micro HDMI for display, and two 46 pin expansion headers which makes it compatible with the Beaglebone ecosystem. The OSD3358-SM-RED has a 16GB eMMC on board and a microSD card interface.

The board also adds some onboard sensors providing a possible real-world case study. It comes with a 9-axis IMU that provides acceleration, gyroscope, and magnetometer data; a barometer to provide altitude; and a multi-channel temperature sensor.

Even though the SM-RED shares some compatibility with the BeagleBone it has no onboard WiFi and Bluetooth, but there’s an Ethernet port, and unlike the BB Black and other BeagleBone variants, it’s a GbE port. You also get 16GB eMMC compared to 4GB on the other BeagleBones.

The following are the specifications for the OSD3358-SM-RED:

  • Processor  — TI Sitara AM335x (1x Cortex-A8 @ 1GHz)
    • PowerVR SGX530 GPU
    • 32-bit 200MHz Cortex-M3 based programmable real-time units (PRUs)
  • Memory —  512MB DDR3 RAM
  • Storage — 16GB eMMC
    • microSD slot with card pre-installed with Debian and drivers
  • Display — Micro-HDMI port
  • Networking — 10/100/1000 Ethernet port
  • Other I/O:
    • 4x USB 2.0 host/device ports
    • Micro-USB client port
    • UART and JTAG
    • 2x BeagleBone Black Cape compatible expansion connectors
  • Other features — 9-axis IMU
    • Barometer and temperature sensors
    • 4x LEDs
    • TPM and secure NOR (currently not supported)
  • Power — 5V input
    • LiPo battery connector
    • Power and reset buttons
    • PMIC (via OSD3358 SiP)
  • Dimensions – 108 x 54 x 32mm
  • Operating system — Debian Linux

The OSD3358-SM-RED platform comes pre-loaded with a Debian Linux distribution complete with driver libraries for the different sensors on the board. All of the design files are freely available and can be used as a known good starting point for new designs. The OSD3358-SM-RED is available from Octavo Systems, Digi-Key, and Mouser for $199. More information may be found on Octavo’s OSD3358-SM-RED product and shopping page.

Microchip’s New Open Source SAMA5D27 SOM Module Runs Mainline Linux

American microcontroller manufacturer company Microchip has unveiled an open source, mainline Linux ready “SAMA5D27 SOM” module. This module is based on a SiP implementation of its Cortex-A5-based SAMA5D27 SoC with 128MB RAM. The 40 x 38mm module is also compatible with a SOM1-EK1 dev board.

SAMA5D27 SOM1

SAMA5D27 SOM1
SAMA5D27 SOM1

The SAMA5D27 SOM is Microchip’s first computer-on-module based on a Linux-ready application processor, and the first SiP-based module built around a SAMA5 SoC. It is mainly designed for rugged IoT applications and the module can be soldered onto a baseboard for versatile ease of use. It offers long-term availability and supports industrial grade -40 to 85°C temperature range.

The SAMA5D27 SOM1 combines the RAM-ready SAMA5D27C-D1G SiP with 64Mb of non-volatile QSPI boot flash and a 10/100 Ethernet PHY.  The module also integrates a 2Kb EEPROM with pre-programmed MAC address. The SOM is further equipped with a PMIC and a 3.3V power supply. Typical power consumption ranges from 120mA to 160mA. There’s also a 60mA idle mode and an ultra-low 30mA mode.

This module has 128 GPIO pins including 2x USB 2.0 host, one USB device, and 2x SD/MMC interfaces with eMMC 4.51 support. There is also support for 10x UART, 7x SPI, 2x CAN, camera and audio interfaces, and much more.

Like the Xplained boards, the module is open source, from the mainline Linux support to the posting of open schematics, design, Gerber, and BoM files for both the SOM and the optional SOM1-EK1 development board.

SAMA5D2 SiP

SAMA5D2 SiP
SAMA5D2 SiP

The newly launched SAMA5D2 SiP is built around the Microchip SAMA5D2. The FreeRTOS-focused 128MB version uses a lower-end SAM5D22 model limited to 16-bit DDR2 RAM while the Linux-ready 512MB and 1GB versions use the higher end SAMA5D27 and SAMA5D28, respectively, with 16/32-bit DDR. All the models are renowned for offering CAN support, and because the SAMA5D28 also adds security features, it’s the only one that is pre-certified for PCI Security.

The SAMA5D has fewer I/O pins and slower performance (166-500MHz) compared to the earlier, 600MHz SAMA5D4, but the power consumption is significantly lower. The SAMA5D2 SoC can run at less than 150mW in active mode at 500MHz with all peripherals activated, and at less than 0.5mW in low power mode with SRAM and registers retention.

SOM1-EK1 development board

SOM1-EK1 Development Board
SOM1-EK1 Development Board

The SAMA5D27-SOM1-EK1 development kit is built around a baseboard with a soldered SAMA5D27-SOM1 module with the 128MB (1Gb) configuration. This board is enhanced with SD and microSD slots, as well as a 10/100 Ethernet port, a micro-USB host port, and a micro-USB device port with power input.

Additional I/O option for this dev board includes USB HSIC, CAN, JLINK, and JTAG interfaces. There’s a tamper connector, 4x push buttons, an LED, supercapacitor backup, and an ATECC508 CryptoAuthentication device. A Linux4SAM BSP is available with Linux kernel and drivers.

The ATSAMA5D27-SOM1 is available for $39, and the ATSAMA5D27-SOM1-EK1 development board is available for $245 each. The ATSAMA5D2 SiP starts at for $8.62 each. More information may be found in Microchip’s SAMA5D2 SiP and SOM announcement and launch page, which points to SOM and SiP pages, as well as the SAMA5D27-SOM1-EK1 dev board page.

OSD3358-SM-RED – A Reference, Evaluation, And Development Board From Octavo Systems

The OSD3358-SM-RED from Octavo Systems is a reference, evaluation, and development board for the OSD335x-SM series of System-in-Package (SiP) devices. It is powered by a 1 GHz processor, ADC, and 1 GB of DDR2 RAM into an enclosure of the size of a coin.

OSD3358-SM-RED single-board computer

The SiP needs a PCB, along with components like an Ethernet jack, power supply, IO pins, and USB sockets to communicate with the other complimentary electronic parts. These boards include several power options, including a micro-USB connector, barrel jack, and solder points for battery usage. Ethernet and USB connectors are included, along with expansion connectors setup so that BeagleBone Black Capes can be connected directly. Finally, a 9-axis IMU, barometer, and temperature sensor are included. Data from sensors can be collected directly without the help of extra hardware or software.

This board is longer and slightly wider than a Raspberry Pi, at an exact dimension of 108 x 54 mm. It’s also thicker at 32 mm due to the decision to mount the Ethernet jack on top of the two USB ports. A micro-SD card slot is included, though WiFi capability is not provided. For internet connectivity, the user needs to rely on wired or dongle connection.

It comes pre-loaded with a Debian Linux distribution, complete with drivers for the onboard sensors already available. It can also boot off of the SD card to load other Operating Systems. This board can be used in one of three ways: as a standalone device, a USB client, or using a UART port as a Linux terminal. In the standalone case, the user simply connects the micro-USB connector to an appropriate power source, then to a monitor via a micro-HDMI to HDMI adapter. Once booted up, the screen goes to a minimal Linux install, allowing the user to access a web browser, terminal, and other necessary tools that a developer can build upon.

At a cost of $199, this board wouldn’t be an appropriate substitute for a Raspberry Pi or BeagleBone in standalone situations, but it will certainly be useful for a professional upgrade to OSD335x-SM SiPs.

Hardware Acronyms: SiP, SoC, SoM, CoM, SBC – What Are They?

If you are new into hardware or still familiarizing yourself to the hardware ecosystem, you will realize some common terms often appear which could sometimes sound confusing or something out of rocket science, but it’s not. Here’s a quick look at five common terms used in hardware products or boards and what they denote.

Let’s take a look at them –

System-in-a-Package (SiP)

Cross section of a SiP

A system in package (SiP) contains several ICs (chips) including a microprocessor on a single substrate such as ceramic or laminate. An example SiP can comprise several chips—such as a specialized processor, DRAM, flash memory—combined with passive components—resistors and capacitors—all mounted on the same substrate. This means that a complete functional unit can be built in a multi-chip package so that few external components need to be added to make it work.

SiP dies can be stacked vertically or tiled horizontally, unlike slightly less dense multi-chip modules, which place dies horizontally on a carrier. SiP connects the dies with standard off-chip wire bonds or solder bumps.

The appeal of a SiP is that it can be compact an otherwise complex system into a very simple package, making it easier to integrate into larger systems. It also simplifies PCB layouts.

Unlike a SOC that is based on a single silicon die, SiP can be based on multiple dies in a single package. SiP is believed to provide more interconnection in the future and possibly face out SoCs.

Package-on-a-Package (PoP)

Package on a Package

A Package-on-a-Package stacks single-component packages vertically, connected via ball grid arrays. Packages can be discrete components (memory, CPU, other logic) or a System-in-a-Package stacked with another package for added or expanded functionality.

PoP provides more component density and also simplifies PCB design. It can also improve signal propagation since the interconnects between components is much shorter.

System-on-a-Chip (SoC)

A System-on-a-chip (SoC) is a microchip with all the necessary electronic circuits and parts for a  given system, such as a smartphone or wearable computer, into a single integrated circuit (IC).

An SoC integrates a microcontroller (or microprocessor) with advanced peripherals like graphic processing unit (GPU), Wi-Fi module, or coprocessor.

Think of an SoC as a computer package inside a chip. The SoC integrates all components of a system into one. It may contain digital, analog, mixed-signal, and often radio-frequency functions – all on a single substrate. An SoC can be based around either a microcontroller (includes CPU, RAM, ROM, and other peripherals) or a microprocessor (includes only a CPU). It is also possible for SoCs to be customized for a specific application, including whatever components, memory, or peripherals necessary, ranging from digital/analog signal ICs, FPGAs, and IOs.

One of the major advantages of an SoC is that it is usually cheaper, smaller, easy to scale, and even more energy efficient. It is easier to build around a SoC for a product than to add several components individually. Despite its obvious advantages, SoC still has a significant disadvantage – you are going to be locked into that hardware configuration for life. This could be fine for consumer products, since you don’t expect any hardware upgrade or so but would limit hacking for makers related application.

A good example of an SoC is what we have in the Raspberry Pi; The Raspberry Pi uses a system on a chip as an almost fully-contained microcomputer. SoCs can help engineers speed up a product to market and even the adoption of new protocols, such as those Bluetooth 5 SoCs, that make it easier to integrate Bluetooth 5 into new products.

System on Module (SoM) / Computer on Module (CoM)

Computer on a module

A System on a Module (SoM) and Computer on Module usually refers to the same thing. A Computer-on-a-module is a step above an SoC. It means a computer or system packaged in a single module. CoMs usually provide every piece you need to build a complete system; they incorporate an SoC (most of the time), connectivity, multimedia and display, GPIO, operating system, and others into one single module.

SoM based designs are usually scalable. SoMs/CoMs are usually paired with a carrier board. These carrier boards are usually used to extend out the SoMs functionality or parts. A SoM helps system designers realize a fully customized electronics assembly, complete with custom interfaces and form factor without the effort of a ground-up electronics design. Customers can purchase an off-the-shelf SoM and marry it to an easy to develop custom baseboard to create a solution functionally identical to one that is fully custom-engineered.

CoMs provide a plug-and-play type advantage since a CoM can be replaced or upgraded within a carrier, without having to change the carrier. There are some benefits to the SoM approach vs. ground-up development. These include cost savings, reduced risk, a variety of CPU choices, decreased customer design requirements, and a small footprint.

Unlike an SBC, a computer-on-module is a type of single-board computer made to plug into a carrier board, baseboard, or backplane for system expansion.

Single Board Computers (SBCs)

A Raspberry Pi SBC

single-board computer (SBC) is a complete computer built on a single circuit board, with a microprocessor(s), memory, input/output (I/O) and other features required for a functional computer. Single-board computers were made as demonstration or development systems, for educational systems, or for use as embedded computer controllers.

Single-board computer builds on SoC to provide a full-fledged computer on small circuit board. Examples of popular SBCs are Raspberry Pi boards, Nvidia Jetson, Beaglebone, and several others.

C.H.I.P Pro The New GR8-Based Module

NextThing Co., is a hardware company that has the goal to create things that would inspire creativity, and help people chase their own ideas of what needed to exist.  After producing their world’s first $9 computer C.H.I.P, they are ready now to launch a new product!

chippro_project_imgC.H.I.P Pro,  the newest addition to the Next Thing Co. family, is powered by GR8, a system-in-package (SiP) that was designed by Next Thing Co. GR8 features a 1GHz Allwinner R8 ARM Cortex-A8 processor, Mali400 GPU, and 256MB of Nanya DDR3 DRAM. in a 14mm x 14mm FBGA package. C.H.I.P. Pro is a system-on-module (SoM) that has 512MB of high-speed NAND storage flashed with NextThing Co.’s GadgetOS. Gadget is an Open Source Linux-based OS, software toolchain, and cloud infrastructure which is designed to bring the speed, openness, and productivity of modern software development to the world of embedded hardware. C.H.I.P Pro can be powered by USB or battery, intelligently managed by the AXP209 power management unit.

The Pro also features 802.11 b/g/n WiFi, Bluetooth 4.2, and is fully certified by the FCC. This board will be available in December at supposedly any quantity for $16.

C.H.I.P Pro block diagram
C.H.I.P Pro block diagram

C.H.I.P Pro design defines two possibilities of installations; either in a product or in a single board computer designed for a breadboard. Its SMT-ready castellated edges and elements on both sides will make reflow soldering not so preferable. Instead, header pins, a ‘debug board’, and two C.H.I.P Pro units are introduced in one package for only 49$ to make soldering easier and to start installing the unit in applications. Due to its size and efficiency, it could be a good competitor for Raspberry Pi Zero.

C.H.I.P. was designed to be used in computer powered products, but it was recognized later that it wasn’t always the best fit. Many of the design choices of C.H.I.P make it hard to build into products. C.H.I.P. Pro addresses this issue, implements feature requests from the community, and is engineered to embed in products. C.H.I.P. and C.H.I.P. Pro are similar in many important ways, but they differ in some features. Here are C.H.I.P Pro advantages:

  • Industrial Grade —512MB SLC NAND
  • Updated Realtek WiFi / BT chipset with B/G/N & BT 4.2
  • Digital Audio / Support for SD Cards via pins
  • USB Breakout for PCB Designs incorporating USB based peripherals
  • Breadboard and SMT Placeable
  • A complete suite of certifications: WiFi Alliance, Bluetooth Consortium, FCC, CE, ROHS
  • Based on GR8 making it 76% smaller than C.H.I.P.
  • Better power consumption with ~3mA suspend to RAM

chipcoC.H.I.P. Pro is powered by GR8, a system-in-package provides a powerful application processor and DDR3 SRAM which eliminates the need for high-speed routing and reduces manufacturing complexity. GR8 is $6 in any quantity and includes the Allwinner AXP209 power management unit.
GR8 also features many popular peripheral interfaces: Two-Wire Interface, two UARTs (one 2-wire and one 4-wire), SD Card-ready SPI, two PWM outputs, a 6-bit ADC, I2S digital audio, S/PDIF IEC-60958 digital audio output, two HS/FS/LS USB PHYs (one USB 2.0 Host and one USB 2.0 OTG), a CMOS Sensor Interface.

GR8 Block Diagram
GR8 Block Diagram

Although it is doubtless that C.H.I.P. Pro will be installed and used in various projects, making GR8 module available for customers is something huge. Providing a jellybean part that contains an entire Linux system makes it possible to add the power of open software into any project and it opens the door for more applications to come.

Further details can be reached at C.H.I.P Pro and GR8 datasheets and at NextThing Co. forums.

Via: Hackaday