Tag Archives: SMPS

Single Regulator contains buck and boost controllers


Linear Technology Corporation introduces the LTC7812, a dual output (boost + buck), low quiescent current synchronous DC/DC controller. When cascaded, its independent step-up (boost) and step-down (buck) controllers regulate the output voltage from an input voltage that can be above, below or equal to the output voltage, maintaining output regulation during cold crank and load dump conditions. Unlike conventional single inductor buck-boost regulators, the LTC7812’s cascaded boost + buck solution provides fast transient response with continuous, non-pulsating, input and output currents, substantially reducing ripple voltage and electromagnetic interference (EMI), making it ideal for automotive, industrial and high power battery operated systems.

Single Regulator contains buck and boost controllers – [Link]

SOS webinar – Simple and efficient solution for wide voltage range applications


Term: 2015.11.25 10:00 – 11:30 CET

Learn more about available topologies for input voltage higher and lower from output level. Focus on the most efficient way to convert power in four-switch buck-boost topology.

  • available topologies of Vin min < Vout < Vin max and differences between them
  • four-switch buck-boost topology as the most efficient, flexible and the smallest solution
  • buck-boost solutions from Linear Technology, applied to real end-devices
  • Diskusia

SOS webinar – Simple and efficient solution for wide voltage range applications – [Link]

500mA, 140V Boost/SEPIC/Flyback/Inverting DC/DC Converter with IQ= 6uA



Linear Technology Corporation announces the LT8331, a current mode step-up DC/DC converter with an internal 500mA, 140V switch. It operates from an input voltage range of 4.5V to 100V, making it suitable for use with a wide range of input sources found in industrial, transportation and avionic applications. The LT8331 can be configured as either a boost, SEPIC, flyback or inverting converter. Its switching frequency is programmable from 100kHz to 500kHz, enabling designers to minimize external component sizes. Burst Mode® operation reduces quiescent current to only 6µA while keeping output ripple below 20mVP-P. The combination of a high voltage MSOP-16E package and tiny externals ensures a very compact footprint while minimizing solution cost.

500mA, 140V Boost/SEPIC/Flyback/Inverting  DC/DC Converter with IQ= 6uA – [Link]


1A from the sugar cube sized module


With continuous improvement TRACO unveils the SMD version of enormously successful 1A DC/DC converter, the TSR1SM.

The TSR1SM series models of step-down switching regulators (non isolating – POL) have a high efficiency up to 96 % which allows full load operation up to +65°C ambient temperature without the need of any heat transmission layer. Excellent output voltage accuracy (±2%) and low standby current (~1 μA) are features that distinguish these switching regulators from linear regulators.To make a SMD version of such a DC/DC converter is not a simple task, the package should withstand temperatures up to 245°C, used in a lead free soldering ovens. TRACO solved successfully this problem and the TSR1SM is qualified for lead free soldering processes as per J-STD-020D.01 (to find at: www.jedec.org – free registration required) with max. peak body temperature 245°C. Also low MSL level 1 allows PCB washing after soldering with baking at 100°C for 30min.

For applications which require lower supply currents up to 0,5Amps, there is a TSR0,5(SM)series of DC/DC converters with better price level available.

1A from the sugar cube sized module – [Link]

MC34VR500V1ES Multi-Output DC/DC Regulator

The circuit in this reference design features the capability of MC34VR500V1ES to supply multiple DC voltage outputs. This device is designed to support the LS1/T1 family of communication processors, which require efficient and precise level of voltage supplies. With its four switching and five linear regulators, the MC34VR500V1ES can supply power to the whole system, e.g., the processor, memory, system peripherals.

The MC34VR500V1ES device runs with a supply voltage ranging from 2.8V to 4.5V. It can provide nine outputs. Four of these outputs (SW1-4) are buck regulators while the rest (LDO1-5) are general purpose LDOs. Each one of the buck regulator is capable of operating in Pulse Frequency Modulation (PFM), Auto Pulse Skip (APS), and Pulse Width Modulation (PWM) switching modes. These buck regulators also have a current limit feature that generates a fault interrupt whenever there is an overcurrent condition. The SW1 output is capable of providing 0.625-1.875V/4.5A supply while SW2 and SW3 can provide 0.625-1.975V/2A and 0.625-1.975V/2.5A, respectively. The SW1, SW2 and SW3 voltages can be varied with a step size of 25mV. The SW4 output is half of the voltage output of SW3. The general output LDOs can output voltages ranging from 1.8-3.3V with a step size of 100mV except for LDO1 which can only give 0.8-1.55V output with 50mV step size. The LDO1 output can provide current up to 250mA, while LDO2 and LDO4 can output up to 100mA only. The LDO5 output can provide 200mA of current while LDO3 can output up to 350mA. Aside from these nine outputs, the MC34VR500V1ES also have a REFOUT output dedicated for DDR memory reference voltage. The voltage of this REFOUT output is usually half of the SW3 output and can only provide up to 10mA of current. The MC34VR500V1ES outputs can be changed by programming it via the I2C interface.

The operation of the MC34VR500V1ES can be reduced to four states, or modes: ON, OFF, Sleep, and Standby. For the device to turn ON, the input voltage must surpass a voltage threshold of 3.1V, the EN pin must be high, and PORB is de-asserted. The 34VR500 enters the OFF mode when the EN pin is low or there is a thermal shutdown event that forces the device into the OFF mode. Standby mode is usually entered when the STBY pin is asserted for low-power mode of operation. The device only goes into sleep mode if the EN pin is de-asserted. To exit sleep mode, assert the EN pin.

MC34VR500V1ES Multi-Output DC/DC Regulator – [Link]

Bias generators with ultralow noise and ripple for sensitive circuits


The LT®3095 generates two low-noise bias supplies from a common input voltage ranging from 3V to 20V. Each channel includes a fixed frequency, peak current-mode step-up switching regulator and a low-noise, singleresistor- programmable 50mA linear regulator. The linear regulator’s high power supply ripple rejection (PSRR) combined with its low-noise performance results in less than 100μVP-P output ripple and noise.

Bias generators with ultralow noise and ripple for sensitive circuits – [Link]

1A, 2 MHz, 60V boost/SEPIC/inverting DC/DC converter, 6µA Iq


by Graham Prophet:

LT8330 is a current mode, 2 MHz step-up DC/DC converter with an internal 1A, 60V switch. It operates from an input voltage range of 3V to 40V, making it suitable for applications with input sources ranging from a single-cell Li-Ion to automotive inputs.

The device can be configured as either a boost, SEPIC or an inverting converter. It uses a fixed 2 MHz switching frequency, enabling designers to minimise external component sizes and avoid critical frequency bands, such as AM radio. Burst Mode operation reduces quiescent current to 6 µA while keeping output ripple below 15 mVP-P. The combination of a 3 x 2 mm DFN or TSOT-23 package and tiny externals ensures a very compact footprint while minimising overall cost.

1A, 2 MHz, 60V boost/SEPIC/inverting DC/DC converter, 6µA Iq – [Link]

LTC3335 – Nanopower Buck-Boost DC/DC with Integrated Coulomb Counter


The LTC®3335 is a high efficiency, low quiescent current (680nA) buck-boost DC/DC converter with an integrated precision coulomb counter which monitors accumulated battery discharge in long life battery powered applications. The buck-boost can operate down to 1.8V on its input and provides eight pin-selectable output voltages with up to 50mA of output current.

The coulomb counter stores the accumulated battery discharge in an internal register accessible via an I2C interface. The LTC3335 features a programmable discharge alarm threshold. When the threshold is reached, an interrupt is generated at the IRQ pin.

To accommodate a wide range of battery types and sizes, the peak input current can be selected from as low as 5mA to as high as 250mA and the full-scale coulomb counter has a programmable range of 32,768:1.

LTC3335 – Nanopower Buck-Boost DC/DC with Integrated Coulomb Counter – [Link]

100V, 1A, synchronous step-down regulator: Iq of 7µA


by Graham Prophet @ edn-europe.com:

LT8631 is a 1A, 100V-input-capable synchronous step-down switching regulator. Synchronous rectification delivers efficiency as high as 90% while Burst Mode operation keeps quiescent current under 7µA in no-load standby conditions.

Its 3V to 100V input voltage range suits it for 48V automotive systems, dual battery transportation, industrial and 36V to 72V telecom applications. Its internal high efficiency switches deliver up to 1A of continuous output current to voltages as low as 0.8V. The LT8631’s Burst Mode operation offers ultralow quiescent current, suiting it for applications such as automotive “always-on” systems. The LT8631’s unique design maintains a minimum dropout voltage, enabling it to operate with duty cycles up to 99%. Its resistor-programmable 100 kHz to 1 MHz frequency range and synchronisation capability enable optimisation between efficiency and external component size. The LT8631’s 20-lead TSSOP package with high voltage lead spacing ensures a compact, thermally efficient footprint for high voltage applications.

100V, 1A, synchronous step-down regulator: Iq of 7µA – [Link]

Power supply IC generates low-noise bipolar (+/-) power rails


by Graham Prophet @ edn-europe.com:

LTC3265 is a high voltage, highly integrated, low noise dual output power supply IC which takes a single positive input supply (VIN_P) and generates low noise bipolar rails up to ±2•VIN_P without any inductors. High voltage boost and inverting charge pumps deliver low noise dual outputs with post-regulating ±50 mA LDOs

The device includes a boost doubling charge pump, an inverting charge pump and two low dropout (LDO) regulators. The boost charge pump has a 4.5V to 16V input range and powers the positive LDO post regulator from its output, VOUT+. The inverting charge pump has a wider input range (4.5V to 32V) which may be connected to either the boost input or output. The negative LDO post regulator is powered from the output of the inverting charge pump, VOUT-. The LTC3265 is suited for a variety of applications that require low noise bipolar supplies from a high voltage input, such as industrial/instrumentation low noise bias generators, portable medical equipment and automotive infotainment systems.

Power supply IC generates low-noise bipolar (+/-) power rails – [Link]