Tag Archives: SOC

A multi-protocol SoC for ultra low-power wireless applications

The nRF52840 SoC of Nordic Semiconductor is based on a 32-bit ARM Cortex-M4F CPU running at 64 MHz with flash and RAM integrated on chip. Ultra low-power wireless applications can use this advanced multi-protocol SoC with different communication protocols.  The 2.4 GHz transceiver supports Bluetooth low energy (Bluetooth 5), 802.15.4, ANT and proprietary protocols. The transceiver also supports high resolution RSSI measurement and automated processes to reduce CPU load. Moreover, EasyDMA for direct data memory access and packet assembly provides full support for hardware (figure 1). The device maintains the compatibility with existing products such as nRF52, nRF51 and nRF24 series.

ultra low-power wireless applications
Figure 1: Block diagram of the nRF52840 SoC

Bluetooth 5 and SoC

Bluetooth 5 (500kbs e 125kbs) is the latest version of the well-known wireless technology. It increases the range of four times and the throughput of eight times, making this technology much more suitable for ultra low-power wireless applications such as wearable, Smart Home and more generally for Internet-related applications (IoT, IIoT). The ultra low power consumption of the Bluetooth 5 protocol facilitates high performance, advertising extension and modulation schemes.

nRF52840 SoC uses power management resources to maximize job processes and achieve an optimal energy efficiency. The power supply ranges between 1.7V and 5.5V ensures a wide choice of batteries. In addition, SoC can also work with USB direct power supply without external regulators. Especially relevant, all devices have automatic clock management with adaptive features to maintain minimal power consumption.

Features:

  • multi-protocol SoC
  • 32-bit ARM Cortex-M4F Processor
  • 1.7v to 5.5v operation
  • 1MB flash + 256kB RAM
  • Bluetooth 5 support for long range and high throughput
  • 802.15.4 radio support
  • On-chip NFC
  • PPI –Programmable Peripheral Interconnect
  • Automated power management system with automatic power management of each peripheral
  • Configurable I/O mapping for analog and digital I/O
  • 48 x GPIO
  • 1 x QSPI
  • 4 x Master/Slave SPI
  • 2 x Two-wire interface (I²C)
  • I²S interface
  • 2 x UART
  • 4 x PWM
  • USB 2.0 controller
  • ARM TrustZone CryptoCell-310 Cryptographic and security module
  • AES 128-bit ECB/CCM/AAR hardware accelerator
  • Digital microphone interface (PDM)
  • Quadrature decoder
  • 12-bit ADC
  • Low power comparator
  • On-chip 50Ω balun
  • On-air compatible with nRF52, nRF51 and nRF24 Series

Development kit

The NRF52840-PDK is a versatile development kit based on nRF52840 SoC for the development of projects by using Bluetooth Low Energy, ANT, 802.15.4, and proprietary 2.4GHz protocols. Moreover, It is also hardware-compatible with the Arduino Uno R3 standard, allowing to use third-party compatible shields. Adding an NFC antenna, the kit enables the NFC tag feature (figure 2 and 3).

ultra low-power wireless applications
Figure 2: NRF52840-PDK development kit

 

ultra low-power wireless applications
Figure 3: block diagram of the NRF52840-PDK development kit

 

Next-generation Bluetooth Low Energy SoC from ST

Graham Prophet @ eedesignnewseurope.com introduces BlueNRG-2, the latest BLE solution from ST. He writes:
Introducing its latest-generation Bluetooth Low Energy (BLE) System-on-Chip, ST Microelectronics highlights low power, small size, and high performance to enable widespread deployment of energy-conscious, space-constrained applications with BLE connectivity. The device provides state-of-the-art security and is Bluetooth 5.0-certified
Next-generation Bluetooth Low Energy SoC from ST – [Link]

What is Embedded FPGA — Known as eFPGA

Today’s market requirements change faster than the typical development time for a new device or the ability of designers of SoCs to know. To solve this problem, FPGAs/MCUs are used so developers can change the configuration/firmware later.

As known, MCU IP is static and you can’t change the silicon design (RTL design) after fabrication. FPGA chips are used to overcome this limitation but the FPGA high cost is a concern compared to the price of the MCUs. From this point a new technology called Embedded FPGA (eFPGA) was invented. This technology can give the flexibility of allowing SoCs to be customized post-production with no high expenses.

Image courtesy of FlexLogic

The idea behind eFPGA is to embed the FPGA core to SoCs without the other components of typical FPGA chips such as: surrounding ring of GPIO,SERDES, and PHYs. This core can be customized in a post-production stage with no need to change the RTL design and manufacturing the chips again.

Image courtesy of QuickLogic

One of eFPGA use cases is an always-on sensor hub for sensor data acquisition. In this use case, the eFPGA can be used to run sensor hub at a very low power level, while the main CPU is hibernated until relevant data is available. eFPGA has other useful uses such as ,and not limited to: software reconfigurable I/O pin multiplexing and Customize GPIO and Serial Interfaces in software.

Moreover, eFPGA is expected to have a brilliant future and to be adapted widely according to the CEO of Flex Logix Technologies in an article published on Circuit Cellar magazine. That’s because of increasing mask cost: approximately $1 million for 40 nm, $2 million for 28 nm, and $4 million for 16 nm, and the need for constantly changing in standards and protocols besides application of AI and machine learning algorithms.

For more information about eFPGA, please refer to this article: Make SoCs flexible with embedded FPGA.

$10 Orange Pi 2G-IoT Competing With Pi Zero W

A new competitor to Raspberry Pi Zero W is just out! A new single-board computer by Orange Pi that is now available at AliExpress is competing against Pi Zero W, the Orange Pi 2G-IoT. Using this powerful SoC you can build a computer, a wireless server, games, musics and sounds, a speaker with Android, Scratch and a lot of other options since Pi 2G-IoT is open source.

The Orange Pi 2G-IoT has ARM Cortex-A5 32bit clocked at 1GHz with 256MB DDR2 RAM, 500 MB of on-board NAND storage to go along with an SD card slot for larger storage. It also has a CSI camera connector, WiFi, Bluetooth, an FM Radio and GSM/GPRS with a sim card slot on the bottom. It is pin compatible with Raspberry Pi’s almost standardized GPIO layout.

This $10 board is impressive especially the addition of GSM/GPRS, but it is not promised to kill other competitors in sales, even though it is a powerful little computer. Since the community of Raspberry Pi product is much more larger and more supportive, Orange Pi fails in engaging its audience with the products it makes.

Unfortunately, Orange Pi website is not updated yet to include its newest product. However if you are interested in getting one for yourself right now, head over to AliExpress to get your 2G-IoT for only $9.90 and to know more details.

Via Hackaday

ASUS Tinker Board Competing Raspberry Pi

Raspberry Pi has been the household name for many years now, and many other companies have tried to replace it with their offering, but no one sussed to replace Raspberry Pi by performance and low-cost. Though, that might change as ASUS are entering the arena with their 90MB0QY1-M0EAY0 Tinker Board, which have better components across the board.

According to Hexus.net, ASUS believes the capabilities of the Tinker Board will make possible projects that were too much to ask of even for the newest Raspberry Pi revision. Discussing the reasoning behind the creation of the ‘ASUS Pi’, the Taiwanese computer firm said:

“Raspberry Pi has been in the market for so long, we’re here to expand users’ choices with more options. And this board has 4K support, higher SoC performance, faster Ethernet transmission, and flexibility for the memory size.”

The ASUS Tinker Board (90MB0QY1-M0EAY0) features Rockchip RK3288 quad-core SOC running at 1.8GHz with 2GB of RAM, which gives almost two times faster that Raspberry Pi 3’s Broadcom chip. The Tinker Board also comes with H.264 4K decode abilities and SDIO 3.0. Below you can see the specification diffraction between ASUS Tinker Board and Raspberry Pi 3.

The Raspberry Pi 3 is available at a price of around £34, with the ASUS Tinker board coming with a slightly higher price around £45-55 depending on the retailer.

Source: TECKKNOW

Open Source Meets Hardware: Open Processor Core

SiFive, the first fabless provider of customized, open-source-enabled semiconductors, had recently announced the availability of its Freedom Everywhere 310 (FE310) system on a chip (SoC), the industry’s first commercially available SoC based on the free and open RISC-V instruction set architecture.

The Freedom E310 (FE310) is the first member of the Freedom Everywhere family of customizable SoCs. Designed for microcontroller, embedded, IoT, and wearable applications, the FE310 features SiFive’s E31 CPU Coreplex, a high-performance, 32-bit RV32IMAC core. Running at 320+ MHz, the FE310 is among the fastest microcontrollers in the market. Additional features include a 16KB L1 Instruction Cache, a 16KB Data SRAM scratchpad, hardware multiply/divide, a debug module, flexible clock generation with on-chip oscillators and PLLs, and a wide variety of peripherals including UARTs, QSPI, PWMs, and timers. Multiple power domains and a low-power standby mode ensure a wide variety of applications can benefit from the FE310.

Furthermore, SiFive launched an open source low-cost HiFive1 software development board based on FE310. As part of this availability, SiFive also has contributed the register-transfer level (RTL) code for FE310 to the open-source community.

The Arduino compatible HiFive1 was live on a crowdfunding campaign on Crowdsupply  and the board reached around $57,000 funding. Check this video to know more about HiFive1:

SiFive is now fulfilling a dream of a lot of developers: a custom silicon designed just for you! With the RTL code open, chip designers are now able to customize  their own SoC on top of the base FE310 by accessing the open source files provided on Github. But don’t worry, even if you don’t have the expertise needed to develop your own core, SiFive is offering a new service called “ chips-as-a-service” that can customize the FE310 to meet your unique needs. All you need is to register here dev.sifive.com, try out your ideas and finally contact the company to finalize the design of your new chip.

This service has completely a new business model for silicon chips businesses, and SiFive is willing to establish a “chip design factory” that can handle 1000 new chip designs a year. It is said that SiFive can start manufacturing the cusomized MCUs in less than 6 months after making sure that each use case is compatible with the Freedom E310 core.

“We started with this revolutionary concept — that instruction sets should be free and open – and were amazed by the incredible rippling effect this has had on the semiconductor industry because it provided a viable alternative to what was previously closed and proprietary,” said Krste Asanovic, co-founder and chief architect, SiFive. “In the few short months since we’ve announced the Freedom Platforms, we’ve seen a tremendous response to our vision of customizable SoCs. The FE310 is a major step forward in the movement toward open-source and mass customization, and SiFive is excited to bring the opportunity for innovation back into the hands of system architects.”

Opening the source of processors’ core has its pros and cons for SiFive. A new business model is assigned to SiFive due to the “chips-as-a-service” feature but in the same time it will open up some new ventures for smaller companies and hardware manufacturers to compete with the market dominating companies. Open source MCUs will bring a lot of updates to the hardware development scene and will pave the way for a whole new business of customized chip design provided by talented hardware system developers and architects.

To know more about the custom design feature visit the developers section of SiFive dev.sifive.com. Documentation of the SiFive new chip is available here and also source codes and files of the RTL code are provided at Github.

HiFive1, An Open-Source RISC-V Development Kit

By bringing the power of open-source and agile hardware design to the semiconductor industry, SiFive aims to increase the performance and efficiency of customized silicon chips with lower cost.

The Freedom E310 (FE310) is the first member of the Freedom Everywhere SoCs family, a series of customizable microcontroller SoC platforms, designed based on SiFive’s E31 CPU Coreplex CPU for microcontroller, embedded, IoT, and wearable applications. The SiFive’s E31 CPU Coreplex is a high-performance, 32-bit RV32IMAC core. Running at 320+ MHz.

FE310 Block Diagram
FE310 Block Diagram

SiFive recently announced the ‘HiFive1’, an open-source Arduino-compatible RISC-V development board that features the FE310 SoC. It is a 68 x 51 mm board consists of 19 Digital I/O pins, 9 PWM pins, and 128 Mbit Off-Chip flash memory. HiFive1 operates at 3.3V and 1.8V and is fed with 5V via USB or with 7-12V DC jack. The board can be programed using Arduino IDE or Freedom E SDK.

HiFive1’s Specifications:
  • Microcontroller: SiFive Freedom E310 (FE310)
    • CPU: SiFive E31 CPU
    • Architecture: 32-bit RV32IMAC
    • Speed: 320+ MHz
    • Performance: 1.61 DMIPs/MHz, 2.73 Coremark/MHz
    • Memory: 16 KB Instruction Cache, 16 KB Data Scratchpad
    • Other Features: Hardware Multiply/Divide, Debug Module, Flexible Clock Generation with on-chip oscillators and PLLs
  • Operating Voltage: 3.3 V and 1.8 V
  • Input Voltage: 5 V USB or 7-12 VDC Jack
  • IO Voltages: Both 3.3 V or 5 V supported
  • Digital I/O Pins: 19
  • PWM Pins: 9
  • SPI Controllers/HW CS Pins: 1/3
  • External Interrupt Pins: 19
  • External Wakeup Pins: 1
  • Flash Memory: 128 Mbit Off-Chip (ISSI SPI Flash)
  • Host Interface (microUSB): Program, Debug, and Serial Communication
  • Dimensions: 68 mm x 51 mm
  • Weight: 22 g
HiFive1 Top View
HiFive1 Top View

riscv-blog-logoRISC-V is an open source instruction set architecture (ISA) that became a standard open architecture for industry implementations under the governance of the RISC-V Foundation. The RISC-V ISA was originally designed and developed in the Computer Science Division at the University of California to support computer architecture researches and education.

In a comparison with Arduino boards, the HiFive has 10x faster CPU clock, larger Flash memory, and lower power consumption. The table below shows the difference between Arduino UNO, Arduino Zero, and Arduino 101:

Comparison

HiFive may be a helpful tool for system architects, hardware hackers and makers, to develop RISC-V applications, customize their own microcontroller, support open-source chips and open hardware. It is also good as a getting started kit to learn more about RISC-V.

You can order a HiFive board for $59 at its crowdfunding campaign, and the full documentation is available here.

Whisper Trigger – An Ultra-low Power Voice Detector

For long period of time, we were using our muscles and bodies to control various machines. However, with the growth of technology, things became much easier. We moved to the use of keypads and buttons to get jobs done. Today, touchscreens have appeared and made everything very simple to use. But we did not get enough, and the near future will be for the voice commands.

Using voice commands implies the need to use detection systems and circuits, which must provide high accuracy results, reliable at both near and far distances, not affected by noise, simultaneously sensitive, fast, and also have low power consumption. Power consumption is very important factor nowadays, especially with the application of Internet of Things (IoT) devices which are powered using batteries and have to work for long time.

Most of current solutions for voice recognition use digital signal processors (DSPs) connected with A/D converters and they work in permanent wake mode which make them consume high amounts of  power in case of IoT applications and smartphones.

The conventional Approach
The conventional Approach

Dolphin Integration, a French corporation works on enabling low-power Systems-on-Chip and provides a solution called Whisper Trigger, an ultra-low power voice detector with outstanding performance of detection, enabling wake-up voice acquisition and recognition when needed. In comparison with other devices, this technology reduces power consumption by 80-90%. It consumes only 20 µA, and needs just 1 millisecond to wake up.

voice_detect_2

Dolphin Integration provides also another solution for text recognition and detection of keywords, the Microelectromechanical System (MEMS) which should be connected to DSP and circular buffer to perform the process of conversion, decimation and filtering.

dolphin-greenmems-microphone

Source: Elektormagazine

An Open-Source SoCs with RISC-V From SiFive

SiFive, a startup from San Francisco, is trying to democratize the access to the world of SoC designing and manufacturing by giving the ability of customizing silicon to the smallest company, inventor, or maker, and taking “the hard parts of building chips working with 3rd part IP, EDA tools and foundries … “ stated by Jack Kang from SiFive.
SiFive is a fabless semiconductor company building customizable SoCs. SiFive takes benefits from using RISC-V in their SoC design. Some of inventors of the open source ISA RISC-V are behind SiFive.

SiFive

SiFive have an IP called Coreplex, it contains U series and E series. U series contains a high-performance multi-core RISC-V CPUs that can run up to 1.6GHz while E series contains a 32-bit RISC-V CPUs.

They designed freedom platforms, Unleashed and Everywhere platforms, which are a verified base silicon platforms that allows software development and prototyping and provide the ability to create silicon customization.

SiFive_SoCVia: elektormagazine