Tag Archives: Switching

3.3V to 30V DC/DC converter using SN6505A

sn6505a_circuit

Bob tipped us with his latest project. It’s a 3V3/30V DC/DC converter using SN6505A from TI.

Recently I’v got my samples of SN6505A, it’s a really nice IC, so I decided to make a simple DC/DC converter to get familiar with it. What I like in this chip is that it can operate on input voltage as low as 2,5V – that makes it great for battery devices. It’s also nice, that it’s a very minimalist design – on primary side all what is needed is decoupling capacitor. One disadvantage is that it doesn’t have a feedback loop.

3.3V to 30V DC/DC converter using SN6505A – [Link]

0.8A step-up DC/DC converters in a tiny package

main


Torex Semiconductor’s XC9141/XC9142 series of 0.8A step-up DC/DC converters come with an input–output disconnection function (load disconnection function) to prevent malfunctioning during standby, and for device functionality that enables power supply to RTC.

When the output voltage is 3.3V, the IC can start from an input voltage of 0.9V with a resistance load of 100Ω, enabling use in devices driven by one alkaline or nickel-hydrogen battery. The input voltage range is 0.65V to 6.0V, and the output voltage range can be set from 1.8V to 5.5V (accuracy ±2.0%) in steps of 0.1V. A switching frequency of 1.2MHz or 3.0MHz can be selected to match the application.

0.8A step-up DC/DC converters in a tiny package – [Link]

Basic Switching Voltage Regulator Tutorial

AO18-Banner-01-760x443

James Lewis @ baldengineer.com discuss about switching regulator types and uses.

A switching voltage regulator is one of my favorite circuits. In school, they were the first circuits I built where I understood how transistors worked. In fact, they were the first circuit I saw an inductor being useful! Switching regulators are incredibly efficient when designed properly. Of course, this detail about design is important.

Basic Switching Voltage Regulator Tutorial – [Link]

BooSTick – small AA voltage booster

BooStick

A single AA battery provides voltages of 5V or 3.3V for hardware prototyping.

This tiny board allows you to bring the power to your project, and not the other way around. Bring your micro to the sensor without running wires! A single AA battery is used to provide breadboard power of 5V or 3.3V (or other voltages by tuning the feedback resistors). A boost regulator provides the voltage.

BooSTick – small AA voltage booster – [Link]

5V to 12V Step Up DC-DC Converter

5V-to-12V-Step-up-converter-500x500

Step up DC-DC converter is based on LM2577-ADJ IC, this project provides 12V output using 5V input, maximum output load 800mA. The LM2577 are monolithic integrated circuits that provide all of the power and control functions for step-up (boost), fly back, and forward converter switching regulators. The device is available in three different output voltage versions: 12V, 15V, and adjustable.

Requiring a minimum number of external components, these regulators are cost effective, and simple to use. Listed in this data sheet are a family of standard inductors and fly back transformers designed to work with these switching regulators. Included on the chip is a 3.0A NPN switch and its associated protection circuitry, consisting of current and thermal limiting, and under voltage lockout. Other features include a 52 kHz fixed-frequency oscillator that requires no external components, a soft start mode to reduce in-rush current during start-up, and current mode control for improved rejection of input voltage and output load transients.

Features

  • Requires Few External Components
  • Input 5V DC
  • Output 12V DC
  • Output Load 800mA
  • Current-mode Operation for Improved Transient Response, Line Regulation, and Current Limit
  • 52 kHz Internal Oscillator
  • Soft-start Function Reduces In-rush Current During Start-up
  • Output Switch Protected by Current Limit, Under-voltage Lockout, and Thermal Shutdown

5V to 12V Step Up DC-DC Converter – [Link]

Choose the right step-up/down voltage regulator for portable applications

F3x600

Reno Rossetti & Inyong Kim discuss about the power needs on portable devices and help us choose the right regulator.

A popular power source for portable devices is a single lithium-ion cell with 4.2V at full charge and 2.8V at end of discharge. However, some functions within portable electronics, such as a SIM card and DSP, require 2.8V and 3.3V. These are normally provided by low noise LDOs. The LDOs inputs (VCC) must be at a slightly higher voltage than the highest LDO output. Hence, VCC ends up right in the middle of the lithium-ion battery’s range of operation.

Choose the right step-up/down voltage regulator for portable applications – [Link]

LTC7813 – Low IQ, 60V Synchronous Boost+Buck Controller

7813

Linear Technology Corporation introduces the LTC7813, a dual output (boost + buck), low quiescent current synchronous DC/DC controller. When cascaded, its independent step-up (boost) and step-down (buck) controllers regulate the output voltage from an input voltage that can be above, below, or equal to the output voltage, including during an automotive load dump or cold crank. Unlike conventional single inductor buck-boost regulators, the LTC7813’s cascaded boost + buck solution provides fast transient response with continuous, non-pulsating input and output currents. It substantially reduces ripple voltage and EMI, ideal for automotive, industrial and high power battery operated systems.

LTC7813 – Low IQ, 60V Synchronous Boost+Buck Controller – [Link]

LTM8064 – 58VIN, 6A CVCC Step-Down μModule Regulator

160322edne-linear8064

LTM8064 is a step-down DC/DC µModule (micro-module/power module) regulator with a 6V to 58V (60Vmax) input voltage range and adjustable load current control with ±10% accuracy at 7A.

Linear Technology introduces the LTM8064, a step-down DC/DC µModule® (power module) regulator with a 6V to 58V (60Vmax) input voltage range and adjustable load current control with ±10% accuracy at 7A. The LTM8064 can be used as a point-of-load step-down regulator operating from 24V, 36V and 48V voltage rails used in communication infrastructure, high end computers, test equipment, automotive, avionics and a wide variety of industrial equipment. In addition, the LTM8064 operates as a constant current source to precisely regulate and control (adjust) the load current up to 7A when sourcing and 9.1A when sinking. Applications requiring precision load current control include Peltier devices for cooling and heating, battery and supercapacitor chargers, LED and laser drivers, and motor and fan controllers.

LTM8064 – 58VIN, 6A CVCC Step-Down μModule Regulator – [Link]

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath

3106

Linear Technology announces the LTC3106, a highly integrated, 1.6µA quiescent current 300mV start-up buck-boost DC/DC converter with PowerPath™ management, optimized for multisource, low power systems. The LTC3106 is ideal for powering low power wireless sensors from rechargeable or primary batteries supplemented by energy harvesting. The LTC3106 incorporates maximum power point control (MPPC) making it compatible with common high impedance power sources, including photovoltaic cells, thermoelectric generators (TEGs) and fuel cells.

LTC3106 – 300mA Low Voltage Buck-Boost Converter with PowerPath – [Link]

LTC3106 – 300mA Low Voltage Buck-Boost Converter

3106

The LTC3106 is a highly integrated, 1.6μA quiescent current 300mV startup buck-boost DC/DC converter with PowerPath management, optimized for multisource, low power systems. The LTC3106 is ideal for powering low power wireless sensors from rechargeable or primary batteries supplemented by energy harvesting. If the primary power source is unavailable, the LTC3106 seamlessly switches to the backup power source. The LTC3106 is compatible with either rechargeable or primary cell batteries and can trickle charge a backup battery whenever there is an energy surplus available.The LTC3106 provides 300mA steady state and 650mA peak load current at up to 92% efficiency.

LTC3106 – 300mA Low Voltage Buck-Boost Converter – [Link]